File: | kern/kern_sig.c |
Warning: | line 1212, column 11 Copies out a struct with a union element with different sizes |
1 | /*- | |||
2 | * Copyright (c) 1982, 1986, 1989, 1991, 1993 | |||
3 | * The Regents of the University of California. All rights reserved. | |||
4 | * (c) UNIX System Laboratories, Inc. | |||
5 | * All or some portions of this file are derived from material licensed | |||
6 | * to the University of California by American Telephone and Telegraph | |||
7 | * Co. or Unix System Laboratories, Inc. and are reproduced herein with | |||
8 | * the permission of UNIX System Laboratories, Inc. | |||
9 | * | |||
10 | * Redistribution and use in source and binary forms, with or without | |||
11 | * modification, are permitted provided that the following conditions | |||
12 | * are met: | |||
13 | * 1. Redistributions of source code must retain the above copyright | |||
14 | * notice, this list of conditions and the following disclaimer. | |||
15 | * 2. Redistributions in binary form must reproduce the above copyright | |||
16 | * notice, this list of conditions and the following disclaimer in the | |||
17 | * documentation and/or other materials provided with the distribution. | |||
18 | * 4. Neither the name of the University nor the names of its contributors | |||
19 | * may be used to endorse or promote products derived from this software | |||
20 | * without specific prior written permission. | |||
21 | * | |||
22 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |||
23 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||
24 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
25 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |||
26 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |||
27 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |||
28 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |||
29 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |||
30 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |||
31 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |||
32 | * SUCH DAMAGE. | |||
33 | * | |||
34 | * @(#)kern_sig.c 8.7 (Berkeley) 4/18/94 | |||
35 | */ | |||
36 | ||||
37 | #include <sys/cdefs.h> | |||
38 | __FBSDID("$FreeBSD: releng/11.0/sys/kern/kern_sig.c 302328 2016-07-03 18:19:48Z kib $")__asm__(".ident\t\"" "$FreeBSD: releng/11.0/sys/kern/kern_sig.c 302328 2016-07-03 18:19:48Z kib $" "\""); | |||
39 | ||||
40 | #include "opt_compat.h" | |||
41 | #include "opt_gzio.h" | |||
42 | #include "opt_ktrace.h" | |||
43 | ||||
44 | #include <sys/param.h> | |||
45 | #include <sys/ctype.h> | |||
46 | #include <sys/systm.h> | |||
47 | #include <sys/signalvar.h> | |||
48 | #include <sys/vnode.h> | |||
49 | #include <sys/acct.h> | |||
50 | #include <sys/bus.h> | |||
51 | #include <sys/capsicum.h> | |||
52 | #include <sys/condvar.h> | |||
53 | #include <sys/event.h> | |||
54 | #include <sys/fcntl.h> | |||
55 | #include <sys/imgact.h> | |||
56 | #include <sys/kernel.h> | |||
57 | #include <sys/ktr.h> | |||
58 | #include <sys/ktrace.h> | |||
59 | #include <sys/lock.h> | |||
60 | #include <sys/malloc.h> | |||
61 | #include <sys/mutex.h> | |||
62 | #include <sys/refcount.h> | |||
63 | #include <sys/namei.h> | |||
64 | #include <sys/proc.h> | |||
65 | #include <sys/procdesc.h> | |||
66 | #include <sys/posix4.h> | |||
67 | #include <sys/pioctl.h> | |||
68 | #include <sys/racct.h> | |||
69 | #include <sys/resourcevar.h> | |||
70 | #include <sys/sdt.h> | |||
71 | #include <sys/sbuf.h> | |||
72 | #include <sys/sleepqueue.h> | |||
73 | #include <sys/smp.h> | |||
74 | #include <sys/stat.h> | |||
75 | #include <sys/sx.h> | |||
76 | #include <sys/syscallsubr.h> | |||
77 | #include <sys/sysctl.h> | |||
78 | #include <sys/sysent.h> | |||
79 | #include <sys/syslog.h> | |||
80 | #include <sys/sysproto.h> | |||
81 | #include <sys/timers.h> | |||
82 | #include <sys/unistd.h> | |||
83 | #include <sys/wait.h> | |||
84 | #include <vm/vm.h> | |||
85 | #include <vm/vm_extern.h> | |||
86 | #include <vm/uma.h> | |||
87 | ||||
88 | #include <sys/jail.h> | |||
89 | ||||
90 | #include <machine/cpu.h> | |||
91 | ||||
92 | #include <security/audit/audit.h> | |||
93 | ||||
94 | #define ONSIG32 32 /* NSIG for osig* syscalls. XXX. */ | |||
95 | ||||
96 | SDT_PROVIDER_DECLARE(proc)extern struct sdt_provider sdt_provider_proc[1]; | |||
97 | SDT_PROBE_DEFINE3(proc, , , signal__send,struct sdt_probe sdt_proc___signal__send[1] = { { sizeof(struct sdt_probe), sdt_provider_proc, { ((void *)0), ((void *)0) }, { ((void *)0), ((void *)0) }, "", "", "signal__send", 0, 0, ( (void *)0) } }; __asm__(".globl " "__start_set_sdt_probes_set" ); __asm__(".globl " "__stop_set_sdt_probes_set"); static void const * const __set_sdt_probes_set_sym_sdt_proc___signal__send __attribute__((__section__("set_" "sdt_probes_set"))) __attribute__ ((__used__)) = &(sdt_proc___signal__send);; static struct sdt_argtype sdta_proc___signal__send0[1] = { { 0, "struct thread *" , ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__send } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__send0 __attribute__ ((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__ )) = &(sdta_proc___signal__send0);; static struct sdt_argtype sdta_proc___signal__send1[1] = { { 1, "struct proc *", ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__send } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__send1 __attribute__ ((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__ )) = &(sdta_proc___signal__send1);; static struct sdt_argtype sdta_proc___signal__send2[1] = { { 2, "int", ((void *)0), { ( (void *)0), ((void *)0) }, sdt_proc___signal__send } }; __asm__ (".globl " "__start_set_sdt_argtypes_set"); __asm__(".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__send2 __attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__ ((__used__)) = &(sdta_proc___signal__send2); | |||
98 | "struct thread *", "struct proc *", "int")struct sdt_probe sdt_proc___signal__send[1] = { { sizeof(struct sdt_probe), sdt_provider_proc, { ((void *)0), ((void *)0) }, { ((void *)0), ((void *)0) }, "", "", "signal__send", 0, 0, ( (void *)0) } }; __asm__(".globl " "__start_set_sdt_probes_set" ); __asm__(".globl " "__stop_set_sdt_probes_set"); static void const * const __set_sdt_probes_set_sym_sdt_proc___signal__send __attribute__((__section__("set_" "sdt_probes_set"))) __attribute__ ((__used__)) = &(sdt_proc___signal__send);; static struct sdt_argtype sdta_proc___signal__send0[1] = { { 0, "struct thread *" , ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__send } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__send0 __attribute__ ((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__ )) = &(sdta_proc___signal__send0);; static struct sdt_argtype sdta_proc___signal__send1[1] = { { 1, "struct proc *", ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__send } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__send1 __attribute__ ((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__ )) = &(sdta_proc___signal__send1);; static struct sdt_argtype sdta_proc___signal__send2[1] = { { 2, "int", ((void *)0), { ( (void *)0), ((void *)0) }, sdt_proc___signal__send } }; __asm__ (".globl " "__start_set_sdt_argtypes_set"); __asm__(".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__send2 __attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__ ((__used__)) = &(sdta_proc___signal__send2);; | |||
99 | SDT_PROBE_DEFINE2(proc, , , signal__clear,struct sdt_probe sdt_proc___signal__clear[1] = { { sizeof(struct sdt_probe), sdt_provider_proc, { ((void *)0), ((void *)0) }, { ((void *)0), ((void *)0) }, "", "", "signal__clear", 0, 0, ((void *)0) } }; __asm__(".globl " "__start_set_sdt_probes_set" ); __asm__(".globl " "__stop_set_sdt_probes_set"); static void const * const __set_sdt_probes_set_sym_sdt_proc___signal__clear __attribute__((__section__("set_" "sdt_probes_set"))) __attribute__ ((__used__)) = &(sdt_proc___signal__clear);; static struct sdt_argtype sdta_proc___signal__clear0[1] = { { 0, "int", (( void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__clear } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__clear0 __attribute__ ((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__ )) = &(sdta_proc___signal__clear0);; static struct sdt_argtype sdta_proc___signal__clear1[1] = { { 1, "ksiginfo_t *", ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__clear } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__clear1 __attribute__ ((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__ )) = &(sdta_proc___signal__clear1); | |||
100 | "int", "ksiginfo_t *")struct sdt_probe sdt_proc___signal__clear[1] = { { sizeof(struct sdt_probe), sdt_provider_proc, { ((void *)0), ((void *)0) }, { ((void *)0), ((void *)0) }, "", "", "signal__clear", 0, 0, ((void *)0) } }; __asm__(".globl " "__start_set_sdt_probes_set" ); __asm__(".globl " "__stop_set_sdt_probes_set"); static void const * const __set_sdt_probes_set_sym_sdt_proc___signal__clear __attribute__((__section__("set_" "sdt_probes_set"))) __attribute__ ((__used__)) = &(sdt_proc___signal__clear);; static struct sdt_argtype sdta_proc___signal__clear0[1] = { { 0, "int", (( void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__clear } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__clear0 __attribute__ ((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__ )) = &(sdta_proc___signal__clear0);; static struct sdt_argtype sdta_proc___signal__clear1[1] = { { 1, "ksiginfo_t *", ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__clear } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__clear1 __attribute__ ((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__ )) = &(sdta_proc___signal__clear1);; | |||
101 | SDT_PROBE_DEFINE3(proc, , , signal__discard,struct sdt_probe sdt_proc___signal__discard[1] = { { sizeof(struct sdt_probe), sdt_provider_proc, { ((void *)0), ((void *)0) }, { ((void *)0), ((void *)0) }, "", "", "signal__discard", 0, 0 , ((void *)0) } }; __asm__(".globl " "__start_set_sdt_probes_set" ); __asm__(".globl " "__stop_set_sdt_probes_set"); static void const * const __set_sdt_probes_set_sym_sdt_proc___signal__discard __attribute__((__section__("set_" "sdt_probes_set"))) __attribute__ ((__used__)) = &(sdt_proc___signal__discard);; static struct sdt_argtype sdta_proc___signal__discard0[1] = { { 0, "struct thread *" , ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__discard } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__discard0 __attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__ ((__used__)) = &(sdta_proc___signal__discard0);; static struct sdt_argtype sdta_proc___signal__discard1[1] = { { 1, "struct proc *" , ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__discard } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__discard1 __attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__ ((__used__)) = &(sdta_proc___signal__discard1);; static struct sdt_argtype sdta_proc___signal__discard2[1] = { { 2, "int", ( (void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__discard } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__discard2 __attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__ ((__used__)) = &(sdta_proc___signal__discard2); | |||
102 | "struct thread *", "struct proc *", "int")struct sdt_probe sdt_proc___signal__discard[1] = { { sizeof(struct sdt_probe), sdt_provider_proc, { ((void *)0), ((void *)0) }, { ((void *)0), ((void *)0) }, "", "", "signal__discard", 0, 0 , ((void *)0) } }; __asm__(".globl " "__start_set_sdt_probes_set" ); __asm__(".globl " "__stop_set_sdt_probes_set"); static void const * const __set_sdt_probes_set_sym_sdt_proc___signal__discard __attribute__((__section__("set_" "sdt_probes_set"))) __attribute__ ((__used__)) = &(sdt_proc___signal__discard);; static struct sdt_argtype sdta_proc___signal__discard0[1] = { { 0, "struct thread *" , ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__discard } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__discard0 __attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__ ((__used__)) = &(sdta_proc___signal__discard0);; static struct sdt_argtype sdta_proc___signal__discard1[1] = { { 1, "struct proc *" , ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__discard } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__discard1 __attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__ ((__used__)) = &(sdta_proc___signal__discard1);; static struct sdt_argtype sdta_proc___signal__discard2[1] = { { 2, "int", ( (void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__discard } }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__ (".globl " "__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__discard2 __attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__ ((__used__)) = &(sdta_proc___signal__discard2);; | |||
103 | ||||
104 | static int coredump(struct thread *); | |||
105 | static int killpg1(struct thread *td, int sig, int pgid, int all, | |||
106 | ksiginfo_t *ksi); | |||
107 | static int issignal(struct thread *td); | |||
108 | static int sigprop(int sig); | |||
109 | static void tdsigwakeup(struct thread *, int, sig_t, int); | |||
110 | static int sig_suspend_threads(struct thread *, struct proc *, int); | |||
111 | static int filt_sigattach(struct knote *kn); | |||
112 | static void filt_sigdetach(struct knote *kn); | |||
113 | static int filt_signal(struct knote *kn, long hint); | |||
114 | static struct thread *sigtd(struct proc *p, int sig, int prop); | |||
115 | static void sigqueue_start(void); | |||
116 | ||||
117 | static uma_zone_t ksiginfo_zone = NULL((void *)0); | |||
118 | struct filterops sig_filtops = { | |||
119 | .f_isfd = 0, | |||
120 | .f_attach = filt_sigattach, | |||
121 | .f_detach = filt_sigdetach, | |||
122 | .f_event = filt_signal, | |||
123 | }; | |||
124 | ||||
125 | static int kern_logsigexit = 1; | |||
126 | SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,static struct sysctl_oid sysctl___kern_logsigexit = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = (34), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (&kern_logsigexit ), .oid_arg2 = (0), .oid_name = ("logsigexit"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Log processes quitting on abnormal signals to syslog(3)" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_logsigexit __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_logsigexit); _Static_assert (((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000 |0x40000000)) & 0) == 2) && sizeof(int) == sizeof (*(&kern_logsigexit)), "compile-time assertion failed") | |||
127 | &kern_logsigexit, 0,static struct sysctl_oid sysctl___kern_logsigexit = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = (34), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (&kern_logsigexit ), .oid_arg2 = (0), .oid_name = ("logsigexit"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Log processes quitting on abnormal signals to syslog(3)" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_logsigexit __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_logsigexit); _Static_assert (((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000 |0x40000000)) & 0) == 2) && sizeof(int) == sizeof (*(&kern_logsigexit)), "compile-time assertion failed") | |||
128 | "Log processes quitting on abnormal signals to syslog(3)")static struct sysctl_oid sysctl___kern_logsigexit = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = (34), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (&kern_logsigexit ), .oid_arg2 = (0), .oid_name = ("logsigexit"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Log processes quitting on abnormal signals to syslog(3)" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_logsigexit __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_logsigexit); _Static_assert (((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000 |0x40000000)) & 0) == 2) && sizeof(int) == sizeof (*(&kern_logsigexit)), "compile-time assertion failed"); | |||
129 | ||||
130 | static int kern_forcesigexit = 1; | |||
131 | SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,static struct sysctl_oid sysctl___kern_forcesigexit = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (&kern_forcesigexit ), .oid_arg2 = (0), .oid_name = ("forcesigexit"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Force trap signal to be handled" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_forcesigexit __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_forcesigexit); _Static_assert (((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000 |0x40000000)) & 0) == 2) && sizeof(int) == sizeof (*(&kern_forcesigexit)), "compile-time assertion failed") | |||
132 | &kern_forcesigexit, 0, "Force trap signal to be handled")static struct sysctl_oid sysctl___kern_forcesigexit = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (&kern_forcesigexit ), .oid_arg2 = (0), .oid_name = ("forcesigexit"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Force trap signal to be handled" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_forcesigexit __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_forcesigexit); _Static_assert (((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000 |0x40000000)) & 0) == 2) && sizeof(int) == sizeof (*(&kern_forcesigexit)), "compile-time assertion failed"); | |||
133 | ||||
134 | static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,struct sysctl_oid sysctl___kern_sigqueue = { .oid_parent = (( &(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (1|((0x80000000 |0x40000000))), .oid_arg1 = (((void *)0)), .oid_arg2 = (0), . oid_name = ("sigqueue"), .oid_handler = (0), .oid_fmt = ("N") , .oid_descr = "POSIX real time signal" }; __asm__(".globl " "__start_set_sysctl_set" ); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue __attribute__ ((__section__("set_" "sysctl_set"))) __attribute__((__used__) ) = &(sysctl___kern_sigqueue); _Static_assert((((0x80000000 |0x40000000)) & 0xf) == 0 || (((0x80000000|0x40000000)) & 0) == 1, "compile-time assertion failed") | |||
135 | "POSIX real time signal")struct sysctl_oid sysctl___kern_sigqueue = { .oid_parent = (( &(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (1|((0x80000000 |0x40000000))), .oid_arg1 = (((void *)0)), .oid_arg2 = (0), . oid_name = ("sigqueue"), .oid_handler = (0), .oid_fmt = ("N") , .oid_descr = "POSIX real time signal" }; __asm__(".globl " "__start_set_sysctl_set" ); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue __attribute__ ((__section__("set_" "sysctl_set"))) __attribute__((__used__) ) = &(sysctl___kern_sigqueue); _Static_assert((((0x80000000 |0x40000000)) & 0xf) == 0 || (((0x80000000|0x40000000)) & 0) == 1, "compile-time assertion failed"); | |||
136 | ||||
137 | static int max_pending_per_proc = 128; | |||
138 | SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,static struct sysctl_oid sysctl___kern_sigqueue_max_pending_per_proc = { .oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children )), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = ( &max_pending_per_proc), .oid_arg2 = (0), .oid_name = ("max_pending_per_proc" ), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Max pending signals per proc" }; __asm__(".globl " "__start_set_sysctl_set" ); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue_max_pending_per_proc __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_sigqueue_max_pending_per_proc ); _Static_assert(((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000|0x40000000)) & 0) == 2) && sizeof (int) == sizeof(*(&max_pending_per_proc)), "compile-time assertion failed" ) | |||
139 | &max_pending_per_proc, 0, "Max pending signals per proc")static struct sysctl_oid sysctl___kern_sigqueue_max_pending_per_proc = { .oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children )), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = ( &max_pending_per_proc), .oid_arg2 = (0), .oid_name = ("max_pending_per_proc" ), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Max pending signals per proc" }; __asm__(".globl " "__start_set_sysctl_set" ); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue_max_pending_per_proc __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_sigqueue_max_pending_per_proc ); _Static_assert(((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000|0x40000000)) & 0) == 2) && sizeof (int) == sizeof(*(&max_pending_per_proc)), "compile-time assertion failed" ); | |||
140 | ||||
141 | static int preallocate_siginfo = 1024; | |||
142 | SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,static struct sysctl_oid sysctl___kern_sigqueue_preallocate = { .oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children )), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x00080000))), .oid_arg1 = ( &preallocate_siginfo), .oid_arg2 = (0), .oid_name = ("preallocate" ), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Preallocated signal memory size" }; __asm__(".globl " "__start_set_sysctl_set" ); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue_preallocate __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_sigqueue_preallocate); _Static_assert (((((0x80000000|0x00080000)) & 0xf) == 0 || (((0x80000000 |0x00080000)) & 0) == 2) && sizeof(int) == sizeof (*(&preallocate_siginfo)), "compile-time assertion failed" ) | |||
143 | &preallocate_siginfo, 0, "Preallocated signal memory size")static struct sysctl_oid sysctl___kern_sigqueue_preallocate = { .oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children )), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x00080000))), .oid_arg1 = ( &preallocate_siginfo), .oid_arg2 = (0), .oid_name = ("preallocate" ), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Preallocated signal memory size" }; __asm__(".globl " "__start_set_sysctl_set" ); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue_preallocate __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_sigqueue_preallocate); _Static_assert (((((0x80000000|0x00080000)) & 0xf) == 0 || (((0x80000000 |0x00080000)) & 0) == 2) && sizeof(int) == sizeof (*(&preallocate_siginfo)), "compile-time assertion failed" ); | |||
144 | ||||
145 | static int signal_overflow = 0; | |||
146 | SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,static struct sysctl_oid sysctl___kern_sigqueue_overflow = { . oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children )), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | (0x80000000)), .oid_arg1 = (&signal_overflow ), .oid_arg2 = (0), .oid_name = ("overflow"), .oid_handler = ( sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Number of signals overflew" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue_overflow __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_sigqueue_overflow); _Static_assert ((((0x80000000) & 0xf) == 0 || ((0x80000000) & 0) == 2 ) && sizeof(int) == sizeof(*(&signal_overflow)), "compile-time assertion failed" ) | |||
147 | &signal_overflow, 0, "Number of signals overflew")static struct sysctl_oid sysctl___kern_sigqueue_overflow = { . oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children )), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | (0x80000000)), .oid_arg1 = (&signal_overflow ), .oid_arg2 = (0), .oid_name = ("overflow"), .oid_handler = ( sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Number of signals overflew" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue_overflow __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_sigqueue_overflow); _Static_assert ((((0x80000000) & 0xf) == 0 || ((0x80000000) & 0) == 2 ) && sizeof(int) == sizeof(*(&signal_overflow)), "compile-time assertion failed" ); | |||
148 | ||||
149 | static int signal_alloc_fail = 0; | |||
150 | SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,static struct sysctl_oid sysctl___kern_sigqueue_alloc_fail = { .oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children )), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | (0x80000000)), .oid_arg1 = (&signal_alloc_fail ), .oid_arg2 = (0), .oid_name = ("alloc_fail"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "signals failed to be allocated" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue_alloc_fail __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_sigqueue_alloc_fail); _Static_assert ((((0x80000000) & 0xf) == 0 || ((0x80000000) & 0) == 2 ) && sizeof(int) == sizeof(*(&signal_alloc_fail)) , "compile-time assertion failed") | |||
151 | &signal_alloc_fail, 0, "signals failed to be allocated")static struct sysctl_oid sysctl___kern_sigqueue_alloc_fail = { .oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children )), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | (0x80000000)), .oid_arg1 = (&signal_alloc_fail ), .oid_arg2 = (0), .oid_name = ("alloc_fail"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "signals failed to be allocated" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue_alloc_fail __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_sigqueue_alloc_fail); _Static_assert ((((0x80000000) & 0xf) == 0 || ((0x80000000) & 0) == 2 ) && sizeof(int) == sizeof(*(&signal_alloc_fail)) , "compile-time assertion failed"); | |||
152 | ||||
153 | SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL)static struct sysinit signal_sys_init = { SI_SUB_P1003_1B, SI_ORDER_FIRST +3, (sysinit_cfunc_t)(sysinit_nfunc_t)sigqueue_start, ((void * )(((void *)0))) }; __asm__(".globl " "__start_set_sysinit_set" ); __asm__(".globl " "__stop_set_sysinit_set"); static void const * const __set_sysinit_set_sym_signal_sys_init __attribute__( (__section__("set_" "sysinit_set"))) __attribute__((__used__) ) = &(signal_sys_init); | |||
154 | ||||
155 | /* | |||
156 | * Policy -- Can ucred cr1 send SIGIO to process cr2? | |||
157 | * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG | |||
158 | * in the right situations. | |||
159 | */ | |||
160 | #define CANSIGIO(cr1, cr2)((cr1)->cr_uid == 0 || (cr1)->cr_ruid == (cr2)->cr_ruid || (cr1)->cr_uid == (cr2)->cr_ruid || (cr1)->cr_ruid == (cr2)->cr_uid || (cr1)->cr_uid == (cr2)->cr_uid) \ | |||
161 | ((cr1)->cr_uid == 0 || \ | |||
162 | (cr1)->cr_ruid == (cr2)->cr_ruid || \ | |||
163 | (cr1)->cr_uid == (cr2)->cr_ruid || \ | |||
164 | (cr1)->cr_ruid == (cr2)->cr_uid || \ | |||
165 | (cr1)->cr_uid == (cr2)->cr_uid) | |||
166 | ||||
167 | static int sugid_coredump; | |||
168 | SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,static struct sysctl_oid sysctl___kern_sugid_coredump = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))), .oid_arg1 = (& sugid_coredump), .oid_arg2 = (0), .oid_name = ("sugid_coredump" ), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Allow setuid and setgid processes to dump core" }; __asm__ (".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set" ); static void const * const __set_sysctl_set_sym_sysctl___kern_sugid_coredump __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_sugid_coredump); _Static_assert ((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || ( (((0x80000000|0x40000000)|0x00080000)) & 0) == 2) && sizeof(int) == sizeof(*(&sugid_coredump)), "compile-time assertion failed" ) | |||
169 | &sugid_coredump, 0, "Allow setuid and setgid processes to dump core")static struct sysctl_oid sysctl___kern_sugid_coredump = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))), .oid_arg1 = (& sugid_coredump), .oid_arg2 = (0), .oid_name = ("sugid_coredump" ), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Allow setuid and setgid processes to dump core" }; __asm__ (".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set" ); static void const * const __set_sysctl_set_sym_sysctl___kern_sugid_coredump __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_sugid_coredump); _Static_assert ((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || ( (((0x80000000|0x40000000)|0x00080000)) & 0) == 2) && sizeof(int) == sizeof(*(&sugid_coredump)), "compile-time assertion failed" ); | |||
170 | ||||
171 | static int capmode_coredump; | |||
172 | SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,static struct sysctl_oid sysctl___kern_capmode_coredump = { . oid_parent = ((&(&sysctl___kern)->oid_children)), . oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))), .oid_arg1 = (&capmode_coredump), .oid_arg2 = (0), .oid_name = ("capmode_coredump"), .oid_handler = (sysctl_handle_int), . oid_fmt = ("I"), .oid_descr = "Allow processes in capability mode to dump core" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_capmode_coredump __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_capmode_coredump); _Static_assert ((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || ( (((0x80000000|0x40000000)|0x00080000)) & 0) == 2) && sizeof(int) == sizeof(*(&capmode_coredump)), "compile-time assertion failed" ) | |||
173 | &capmode_coredump, 0, "Allow processes in capability mode to dump core")static struct sysctl_oid sysctl___kern_capmode_coredump = { . oid_parent = ((&(&sysctl___kern)->oid_children)), . oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))), .oid_arg1 = (&capmode_coredump), .oid_arg2 = (0), .oid_name = ("capmode_coredump"), .oid_handler = (sysctl_handle_int), . oid_fmt = ("I"), .oid_descr = "Allow processes in capability mode to dump core" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_capmode_coredump __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_capmode_coredump); _Static_assert ((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || ( (((0x80000000|0x40000000)|0x00080000)) & 0) == 2) && sizeof(int) == sizeof(*(&capmode_coredump)), "compile-time assertion failed" ); | |||
174 | ||||
175 | static int do_coredump = 1; | |||
176 | SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,static struct sysctl_oid sysctl___kern_coredump = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (&do_coredump) , .oid_arg2 = (0), .oid_name = ("coredump"), .oid_handler = ( sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Enable/Disable coredumps" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_coredump __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_coredump); _Static_assert( ((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000| 0x40000000)) & 0) == 2) && sizeof(int) == sizeof( *(&do_coredump)), "compile-time assertion failed") | |||
177 | &do_coredump, 0, "Enable/Disable coredumps")static struct sysctl_oid sysctl___kern_coredump = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (&do_coredump) , .oid_arg2 = (0), .oid_name = ("coredump"), .oid_handler = ( sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Enable/Disable coredumps" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_coredump __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_coredump); _Static_assert( ((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000| 0x40000000)) & 0) == 2) && sizeof(int) == sizeof( *(&do_coredump)), "compile-time assertion failed"); | |||
178 | ||||
179 | static int set_core_nodump_flag = 0; | |||
180 | SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,static struct sysctl_oid sysctl___kern_nodump_coredump = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (&set_core_nodump_flag ), .oid_arg2 = (0), .oid_name = ("nodump_coredump"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Enable setting the NODUMP flag on coredump files" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_nodump_coredump __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_nodump_coredump); _Static_assert (((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000 |0x40000000)) & 0) == 2) && sizeof(int) == sizeof (*(&set_core_nodump_flag)), "compile-time assertion failed" ) | |||
181 | 0, "Enable setting the NODUMP flag on coredump files")static struct sysctl_oid sysctl___kern_nodump_coredump = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (&set_core_nodump_flag ), .oid_arg2 = (0), .oid_name = ("nodump_coredump"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Enable setting the NODUMP flag on coredump files" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_nodump_coredump __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_nodump_coredump); _Static_assert (((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000 |0x40000000)) & 0) == 2) && sizeof(int) == sizeof (*(&set_core_nodump_flag)), "compile-time assertion failed" ); | |||
182 | ||||
183 | static int coredump_devctl = 0; | |||
184 | SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,static struct sysctl_oid sysctl___kern_coredump_devctl = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (&coredump_devctl ), .oid_arg2 = (0), .oid_name = ("coredump_devctl"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Generate a devctl notification when processes coredump" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_coredump_devctl __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_coredump_devctl); _Static_assert (((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000 |0x40000000)) & 0) == 2) && sizeof(int) == sizeof (*(&coredump_devctl)), "compile-time assertion failed") | |||
185 | 0, "Generate a devctl notification when processes coredump")static struct sysctl_oid sysctl___kern_coredump_devctl = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (&coredump_devctl ), .oid_arg2 = (0), .oid_name = ("coredump_devctl"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Generate a devctl notification when processes coredump" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_coredump_devctl __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_coredump_devctl); _Static_assert (((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000 |0x40000000)) & 0) == 2) && sizeof(int) == sizeof (*(&coredump_devctl)), "compile-time assertion failed"); | |||
186 | ||||
187 | /* | |||
188 | * Signal properties and actions. | |||
189 | * The array below categorizes the signals and their default actions | |||
190 | * according to the following properties: | |||
191 | */ | |||
192 | #define SA_KILL0x01 0x01 /* terminates process by default */ | |||
193 | #define SA_CORE0x02 0x02 /* ditto and coredumps */ | |||
194 | #define SA_STOP0x04 0x04 /* suspend process */ | |||
195 | #define SA_TTYSTOP0x08 0x08 /* ditto, from tty */ | |||
196 | #define SA_IGNORE0x10 0x10 /* ignore by default */ | |||
197 | #define SA_CONT0x20 0x20 /* continue if suspended */ | |||
198 | #define SA_CANTMASK0x40 0x40 /* non-maskable, catchable */ | |||
199 | ||||
200 | static int sigproptbl[NSIG32] = { | |||
201 | SA_KILL0x01, /* SIGHUP */ | |||
202 | SA_KILL0x01, /* SIGINT */ | |||
203 | SA_KILL0x01|SA_CORE0x02, /* SIGQUIT */ | |||
204 | SA_KILL0x01|SA_CORE0x02, /* SIGILL */ | |||
205 | SA_KILL0x01|SA_CORE0x02, /* SIGTRAP */ | |||
206 | SA_KILL0x01|SA_CORE0x02, /* SIGABRT */ | |||
207 | SA_KILL0x01|SA_CORE0x02, /* SIGEMT */ | |||
208 | SA_KILL0x01|SA_CORE0x02, /* SIGFPE */ | |||
209 | SA_KILL0x01, /* SIGKILL */ | |||
210 | SA_KILL0x01|SA_CORE0x02, /* SIGBUS */ | |||
211 | SA_KILL0x01|SA_CORE0x02, /* SIGSEGV */ | |||
212 | SA_KILL0x01|SA_CORE0x02, /* SIGSYS */ | |||
213 | SA_KILL0x01, /* SIGPIPE */ | |||
214 | SA_KILL0x01, /* SIGALRM */ | |||
215 | SA_KILL0x01, /* SIGTERM */ | |||
216 | SA_IGNORE0x10, /* SIGURG */ | |||
217 | SA_STOP0x04, /* SIGSTOP */ | |||
218 | SA_STOP0x04|SA_TTYSTOP0x08, /* SIGTSTP */ | |||
219 | SA_IGNORE0x10|SA_CONT0x20, /* SIGCONT */ | |||
220 | SA_IGNORE0x10, /* SIGCHLD */ | |||
221 | SA_STOP0x04|SA_TTYSTOP0x08, /* SIGTTIN */ | |||
222 | SA_STOP0x04|SA_TTYSTOP0x08, /* SIGTTOU */ | |||
223 | SA_IGNORE0x10, /* SIGIO */ | |||
224 | SA_KILL0x01, /* SIGXCPU */ | |||
225 | SA_KILL0x01, /* SIGXFSZ */ | |||
226 | SA_KILL0x01, /* SIGVTALRM */ | |||
227 | SA_KILL0x01, /* SIGPROF */ | |||
228 | SA_IGNORE0x10, /* SIGWINCH */ | |||
229 | SA_IGNORE0x10, /* SIGINFO */ | |||
230 | SA_KILL0x01, /* SIGUSR1 */ | |||
231 | SA_KILL0x01, /* SIGUSR2 */ | |||
232 | }; | |||
233 | ||||
234 | static void reschedule_signals(struct proc *p, sigset_t block, int flags); | |||
235 | ||||
236 | static void | |||
237 | sigqueue_start(void) | |||
238 | { | |||
239 | ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t), | |||
240 | NULL((void *)0), NULL((void *)0), NULL((void *)0), NULL((void *)0), UMA_ALIGN_PTR(sizeof(void *) - 1), 0); | |||
241 | uma_prealloc(ksiginfo_zone, preallocate_siginfo); | |||
242 | p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS9, _POSIX_REALTIME_SIGNALS200112L); | |||
243 | p31b_setcfg(CTL_P1003_1B_RTSIG_MAX21, SIGRTMAX126 - SIGRTMIN65 + 1); | |||
244 | p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX24, max_pending_per_proc); | |||
245 | } | |||
246 | ||||
247 | ksiginfo_t * | |||
248 | ksiginfo_alloc(int wait) | |||
249 | { | |||
250 | int flags; | |||
251 | ||||
252 | flags = M_ZERO0x0100; | |||
253 | if (! wait) | |||
254 | flags |= M_NOWAIT0x0001; | |||
255 | if (ksiginfo_zone != NULL((void *)0)) | |||
256 | return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags)); | |||
257 | return (NULL((void *)0)); | |||
258 | } | |||
259 | ||||
260 | void | |||
261 | ksiginfo_free(ksiginfo_t *ksi) | |||
262 | { | |||
263 | uma_zfree(ksiginfo_zone, ksi); | |||
264 | } | |||
265 | ||||
266 | static __inline int | |||
267 | ksiginfo_tryfree(ksiginfo_t *ksi) | |||
268 | { | |||
269 | if (!(ksi->ksi_flags & KSI_EXT0x02)) { | |||
270 | uma_zfree(ksiginfo_zone, ksi); | |||
271 | return (1); | |||
272 | } | |||
273 | return (0); | |||
274 | } | |||
275 | ||||
276 | void | |||
277 | sigqueue_init(sigqueue_t *list, struct proc *p) | |||
278 | { | |||
279 | SIGEMPTYSET(list->sq_signals)do { int __i; for (__i = 0; __i < 4; __i++) (list->sq_signals ).__bits[__i] = 0; } while (0); | |||
280 | SIGEMPTYSET(list->sq_kill)do { int __i; for (__i = 0; __i < 4; __i++) (list->sq_kill ).__bits[__i] = 0; } while (0); | |||
281 | TAILQ_INIT(&list->sq_list)do { (((&list->sq_list))->tqh_first) = ((void *)0); (&list->sq_list)->tqh_last = &(((&list-> sq_list))->tqh_first); ; } while (0); | |||
282 | list->sq_proc = p; | |||
283 | list->sq_flags = SQ_INIT0x01; | |||
284 | } | |||
285 | ||||
286 | /* | |||
287 | * Get a signal's ksiginfo. | |||
288 | * Return: | |||
289 | * 0 - signal not found | |||
290 | * others - signal number | |||
291 | */ | |||
292 | static int | |||
293 | sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si) | |||
294 | { | |||
295 | struct proc *p = sq->sq_proc; | |||
296 | struct ksiginfo *ksi, *next; | |||
297 | int count = 0; | |||
298 | ||||
299 | KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"))do { } while (0); | |||
300 | ||||
301 | if (!SIGISMEMBER(sq->sq_signals, signo)((sq->sq_signals).__bits[(((signo) - 1) >> 5)] & (1 << (((signo) - 1) & 31)))) | |||
302 | return (0); | |||
303 | ||||
304 | if (SIGISMEMBER(sq->sq_kill, signo)((sq->sq_kill).__bits[(((signo) - 1) >> 5)] & (1 << (((signo) - 1) & 31)))) { | |||
305 | count++; | |||
306 | SIGDELSET(sq->sq_kill, signo)((sq->sq_kill).__bits[(((signo) - 1) >> 5)] &= ~ (1 << (((signo) - 1) & 31))); | |||
307 | } | |||
308 | ||||
309 | TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next)for ((ksi) = (((&sq->sq_list))->tqh_first); (ksi) && ((next) = (((ksi))->ksi_link.tqe_next), 1); (ksi) = (next )) { | |||
310 | if (ksi->ksi_signoksi_info.si_signo == signo) { | |||
311 | if (count == 0) { | |||
312 | TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link)do { ; ; ; ; if (((((ksi))->ksi_link.tqe_next)) != ((void * )0)) (((ksi))->ksi_link.tqe_next)->ksi_link.tqe_prev = ( ksi)->ksi_link.tqe_prev; else { (&sq->sq_list)-> tqh_last = (ksi)->ksi_link.tqe_prev; ; } *(ksi)->ksi_link .tqe_prev = (((ksi))->ksi_link.tqe_next); ; ; ; } while (0 ); | |||
313 | ksi->ksi_sigq = NULL((void *)0); | |||
314 | ksiginfo_copy(ksi, si); | |||
315 | if (ksiginfo_tryfree(ksi) && p != NULL((void *)0)) | |||
316 | p->p_pendingcnt--; | |||
317 | } | |||
318 | if (++count > 1) | |||
319 | break; | |||
320 | } | |||
321 | } | |||
322 | ||||
323 | if (count <= 1) | |||
324 | SIGDELSET(sq->sq_signals, signo)((sq->sq_signals).__bits[(((signo) - 1) >> 5)] &= ~(1 << (((signo) - 1) & 31))); | |||
325 | si->ksi_signoksi_info.si_signo = signo; | |||
326 | return (signo); | |||
327 | } | |||
328 | ||||
329 | void | |||
330 | sigqueue_take(ksiginfo_t *ksi) | |||
331 | { | |||
332 | struct ksiginfo *kp; | |||
333 | struct proc *p; | |||
334 | sigqueue_t *sq; | |||
335 | ||||
336 | if (ksi == NULL((void *)0) || (sq = ksi->ksi_sigq) == NULL((void *)0)) | |||
337 | return; | |||
338 | ||||
339 | p = sq->sq_proc; | |||
340 | TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link)do { ; ; ; ; if (((((ksi))->ksi_link.tqe_next)) != ((void * )0)) (((ksi))->ksi_link.tqe_next)->ksi_link.tqe_prev = ( ksi)->ksi_link.tqe_prev; else { (&sq->sq_list)-> tqh_last = (ksi)->ksi_link.tqe_prev; ; } *(ksi)->ksi_link .tqe_prev = (((ksi))->ksi_link.tqe_next); ; ; ; } while (0 ); | |||
341 | ksi->ksi_sigq = NULL((void *)0); | |||
342 | if (!(ksi->ksi_flags & KSI_EXT0x02) && p != NULL((void *)0)) | |||
343 | p->p_pendingcnt--; | |||
344 | ||||
345 | for (kp = TAILQ_FIRST(&sq->sq_list)((&sq->sq_list)->tqh_first); kp != NULL((void *)0); | |||
346 | kp = TAILQ_NEXT(kp, ksi_link)((kp)->ksi_link.tqe_next)) { | |||
347 | if (kp->ksi_signoksi_info.si_signo == ksi->ksi_signoksi_info.si_signo) | |||
348 | break; | |||
349 | } | |||
350 | if (kp == NULL((void *)0) && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo)((sq->sq_kill).__bits[(((ksi->ksi_info.si_signo) - 1) >> 5)] & (1 << (((ksi->ksi_info.si_signo) - 1) & 31)))) | |||
351 | SIGDELSET(sq->sq_signals, ksi->ksi_signo)((sq->sq_signals).__bits[(((ksi->ksi_info.si_signo) - 1 ) >> 5)] &= ~(1 << (((ksi->ksi_info.si_signo ) - 1) & 31))); | |||
352 | } | |||
353 | ||||
354 | static int | |||
355 | sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si) | |||
356 | { | |||
357 | struct proc *p = sq->sq_proc; | |||
358 | struct ksiginfo *ksi; | |||
359 | int ret = 0; | |||
360 | ||||
361 | KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"))do { } while (0); | |||
362 | ||||
363 | if (signo == SIGKILL9 || signo == SIGSTOP17 || si == NULL((void *)0)) { | |||
364 | SIGADDSET(sq->sq_kill, signo)((sq->sq_kill).__bits[(((signo) - 1) >> 5)] |= (1 << (((signo) - 1) & 31))); | |||
365 | goto out_set_bit; | |||
366 | } | |||
367 | ||||
368 | /* directly insert the ksi, don't copy it */ | |||
369 | if (si->ksi_flags & KSI_INS0x04) { | |||
370 | if (si->ksi_flags & KSI_HEAD0x10) | |||
371 | TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link)do { ; if (((((si))->ksi_link.tqe_next) = (((&sq->sq_list ))->tqh_first)) != ((void *)0)) (((&sq->sq_list))-> tqh_first)->ksi_link.tqe_prev = &(((si))->ksi_link. tqe_next); else (&sq->sq_list)->tqh_last = &((( si))->ksi_link.tqe_next); (((&sq->sq_list))->tqh_first ) = (si); (si)->ksi_link.tqe_prev = &(((&sq->sq_list ))->tqh_first); ; ; } while (0); | |||
372 | else | |||
373 | TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link)do { ; (((si))->ksi_link.tqe_next) = ((void *)0); (si)-> ksi_link.tqe_prev = (&sq->sq_list)->tqh_last; *(& sq->sq_list)->tqh_last = (si); (&sq->sq_list)-> tqh_last = &(((si))->ksi_link.tqe_next); ; ; } while ( 0); | |||
374 | si->ksi_sigq = sq; | |||
375 | goto out_set_bit; | |||
376 | } | |||
377 | ||||
378 | if (__predict_false(ksiginfo_zone == NULL)__builtin_expect((ksiginfo_zone == ((void *)0)), 0)) { | |||
379 | SIGADDSET(sq->sq_kill, signo)((sq->sq_kill).__bits[(((signo) - 1) >> 5)] |= (1 << (((signo) - 1) & 31))); | |||
380 | goto out_set_bit; | |||
381 | } | |||
382 | ||||
383 | if (p != NULL((void *)0) && p->p_pendingcnt >= max_pending_per_proc) { | |||
384 | signal_overflow++; | |||
385 | ret = EAGAIN35; | |||
386 | } else if ((ksi = ksiginfo_alloc(0)) == NULL((void *)0)) { | |||
387 | signal_alloc_fail++; | |||
388 | ret = EAGAIN35; | |||
389 | } else { | |||
390 | if (p != NULL((void *)0)) | |||
391 | p->p_pendingcnt++; | |||
392 | ksiginfo_copy(si, ksi); | |||
393 | ksi->ksi_signoksi_info.si_signo = signo; | |||
394 | if (si->ksi_flags & KSI_HEAD0x10) | |||
395 | TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link)do { ; if (((((ksi))->ksi_link.tqe_next) = (((&sq-> sq_list))->tqh_first)) != ((void *)0)) (((&sq->sq_list ))->tqh_first)->ksi_link.tqe_prev = &(((ksi))->ksi_link .tqe_next); else (&sq->sq_list)->tqh_last = &(( (ksi))->ksi_link.tqe_next); (((&sq->sq_list))->tqh_first ) = (ksi); (ksi)->ksi_link.tqe_prev = &(((&sq-> sq_list))->tqh_first); ; ; } while (0); | |||
396 | else | |||
397 | TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link)do { ; (((ksi))->ksi_link.tqe_next) = ((void *)0); (ksi)-> ksi_link.tqe_prev = (&sq->sq_list)->tqh_last; *(& sq->sq_list)->tqh_last = (ksi); (&sq->sq_list)-> tqh_last = &(((ksi))->ksi_link.tqe_next); ; ; } while ( 0); | |||
398 | ksi->ksi_sigq = sq; | |||
399 | } | |||
400 | ||||
401 | if ((si->ksi_flags & KSI_TRAP0x01) != 0 || | |||
402 | (si->ksi_flags & KSI_SIGQ0x08) == 0) { | |||
403 | if (ret != 0) | |||
404 | SIGADDSET(sq->sq_kill, signo)((sq->sq_kill).__bits[(((signo) - 1) >> 5)] |= (1 << (((signo) - 1) & 31))); | |||
405 | ret = 0; | |||
406 | goto out_set_bit; | |||
407 | } | |||
408 | ||||
409 | if (ret != 0) | |||
410 | return (ret); | |||
411 | ||||
412 | out_set_bit: | |||
413 | SIGADDSET(sq->sq_signals, signo)((sq->sq_signals).__bits[(((signo) - 1) >> 5)] |= (1 << (((signo) - 1) & 31))); | |||
414 | return (ret); | |||
415 | } | |||
416 | ||||
417 | void | |||
418 | sigqueue_flush(sigqueue_t *sq) | |||
419 | { | |||
420 | struct proc *p = sq->sq_proc; | |||
421 | ksiginfo_t *ksi; | |||
422 | ||||
423 | KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"))do { } while (0); | |||
424 | ||||
425 | if (p != NULL((void *)0)) | |||
426 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
427 | ||||
428 | while ((ksi = TAILQ_FIRST(&sq->sq_list)((&sq->sq_list)->tqh_first)) != NULL((void *)0)) { | |||
429 | TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link)do { ; ; ; ; if (((((ksi))->ksi_link.tqe_next)) != ((void * )0)) (((ksi))->ksi_link.tqe_next)->ksi_link.tqe_prev = ( ksi)->ksi_link.tqe_prev; else { (&sq->sq_list)-> tqh_last = (ksi)->ksi_link.tqe_prev; ; } *(ksi)->ksi_link .tqe_prev = (((ksi))->ksi_link.tqe_next); ; ; ; } while (0 ); | |||
430 | ksi->ksi_sigq = NULL((void *)0); | |||
431 | if (ksiginfo_tryfree(ksi) && p != NULL((void *)0)) | |||
432 | p->p_pendingcnt--; | |||
433 | } | |||
434 | ||||
435 | SIGEMPTYSET(sq->sq_signals)do { int __i; for (__i = 0; __i < 4; __i++) (sq->sq_signals ).__bits[__i] = 0; } while (0); | |||
436 | SIGEMPTYSET(sq->sq_kill)do { int __i; for (__i = 0; __i < 4; __i++) (sq->sq_kill ).__bits[__i] = 0; } while (0); | |||
437 | } | |||
438 | ||||
439 | static void | |||
440 | sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set) | |||
441 | { | |||
442 | sigset_t tmp; | |||
443 | struct proc *p1, *p2; | |||
444 | ksiginfo_t *ksi, *next; | |||
445 | ||||
446 | KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"))do { } while (0); | |||
447 | KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"))do { } while (0); | |||
448 | p1 = src->sq_proc; | |||
449 | p2 = dst->sq_proc; | |||
450 | /* Move siginfo to target list */ | |||
451 | TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next)for ((ksi) = (((&src->sq_list))->tqh_first); (ksi) && ((next) = (((ksi))->ksi_link.tqe_next), 1); (ksi) = (next )) { | |||
452 | if (SIGISMEMBER(*set, ksi->ksi_signo)((*set).__bits[(((ksi->ksi_info.si_signo) - 1) >> 5) ] & (1 << (((ksi->ksi_info.si_signo) - 1) & 31 )))) { | |||
453 | TAILQ_REMOVE(&src->sq_list, ksi, ksi_link)do { ; ; ; ; if (((((ksi))->ksi_link.tqe_next)) != ((void * )0)) (((ksi))->ksi_link.tqe_next)->ksi_link.tqe_prev = ( ksi)->ksi_link.tqe_prev; else { (&src->sq_list)-> tqh_last = (ksi)->ksi_link.tqe_prev; ; } *(ksi)->ksi_link .tqe_prev = (((ksi))->ksi_link.tqe_next); ; ; ; } while (0 ); | |||
454 | if (p1 != NULL((void *)0)) | |||
455 | p1->p_pendingcnt--; | |||
456 | TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link)do { ; (((ksi))->ksi_link.tqe_next) = ((void *)0); (ksi)-> ksi_link.tqe_prev = (&dst->sq_list)->tqh_last; *(& dst->sq_list)->tqh_last = (ksi); (&dst->sq_list) ->tqh_last = &(((ksi))->ksi_link.tqe_next); ; ; } while (0); | |||
457 | ksi->ksi_sigq = dst; | |||
458 | if (p2 != NULL((void *)0)) | |||
459 | p2->p_pendingcnt++; | |||
460 | } | |||
461 | } | |||
462 | ||||
463 | /* Move pending bits to target list */ | |||
464 | tmp = src->sq_kill; | |||
465 | SIGSETAND(tmp, *set)do { int __i; for (__i = 0; __i < 4; __i++) (tmp).__bits[__i ] &= (*set).__bits[__i]; } while (0); | |||
466 | SIGSETOR(dst->sq_kill, tmp)do { int __i; for (__i = 0; __i < 4; __i++) (dst->sq_kill ).__bits[__i] |= (tmp).__bits[__i]; } while (0); | |||
467 | SIGSETNAND(src->sq_kill, tmp)do { int __i; for (__i = 0; __i < 4; __i++) (src->sq_kill ).__bits[__i] &= ~(tmp).__bits[__i]; } while (0); | |||
468 | ||||
469 | tmp = src->sq_signals; | |||
470 | SIGSETAND(tmp, *set)do { int __i; for (__i = 0; __i < 4; __i++) (tmp).__bits[__i ] &= (*set).__bits[__i]; } while (0); | |||
471 | SIGSETOR(dst->sq_signals, tmp)do { int __i; for (__i = 0; __i < 4; __i++) (dst->sq_signals ).__bits[__i] |= (tmp).__bits[__i]; } while (0); | |||
472 | SIGSETNAND(src->sq_signals, tmp)do { int __i; for (__i = 0; __i < 4; __i++) (src->sq_signals ).__bits[__i] &= ~(tmp).__bits[__i]; } while (0); | |||
473 | } | |||
474 | ||||
475 | #if 0 | |||
476 | static void | |||
477 | sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo) | |||
478 | { | |||
479 | sigset_t set; | |||
480 | ||||
481 | SIGEMPTYSET(set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i ] = 0; } while (0); | |||
482 | SIGADDSET(set, signo)((set).__bits[(((signo) - 1) >> 5)] |= (1 << (((signo ) - 1) & 31))); | |||
483 | sigqueue_move_set(src, dst, &set); | |||
484 | } | |||
485 | #endif | |||
486 | ||||
487 | static void | |||
488 | sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set) | |||
489 | { | |||
490 | struct proc *p = sq->sq_proc; | |||
491 | ksiginfo_t *ksi, *next; | |||
492 | ||||
493 | KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"))do { } while (0); | |||
494 | ||||
495 | /* Remove siginfo queue */ | |||
496 | TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next)for ((ksi) = (((&sq->sq_list))->tqh_first); (ksi) && ((next) = (((ksi))->ksi_link.tqe_next), 1); (ksi) = (next )) { | |||
497 | if (SIGISMEMBER(*set, ksi->ksi_signo)((*set).__bits[(((ksi->ksi_info.si_signo) - 1) >> 5) ] & (1 << (((ksi->ksi_info.si_signo) - 1) & 31 )))) { | |||
498 | TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link)do { ; ; ; ; if (((((ksi))->ksi_link.tqe_next)) != ((void * )0)) (((ksi))->ksi_link.tqe_next)->ksi_link.tqe_prev = ( ksi)->ksi_link.tqe_prev; else { (&sq->sq_list)-> tqh_last = (ksi)->ksi_link.tqe_prev; ; } *(ksi)->ksi_link .tqe_prev = (((ksi))->ksi_link.tqe_next); ; ; ; } while (0 ); | |||
499 | ksi->ksi_sigq = NULL((void *)0); | |||
500 | if (ksiginfo_tryfree(ksi) && p != NULL((void *)0)) | |||
501 | p->p_pendingcnt--; | |||
502 | } | |||
503 | } | |||
504 | SIGSETNAND(sq->sq_kill, *set)do { int __i; for (__i = 0; __i < 4; __i++) (sq->sq_kill ).__bits[__i] &= ~(*set).__bits[__i]; } while (0); | |||
505 | SIGSETNAND(sq->sq_signals, *set)do { int __i; for (__i = 0; __i < 4; __i++) (sq->sq_signals ).__bits[__i] &= ~(*set).__bits[__i]; } while (0); | |||
506 | } | |||
507 | ||||
508 | void | |||
509 | sigqueue_delete(sigqueue_t *sq, int signo) | |||
510 | { | |||
511 | sigset_t set; | |||
512 | ||||
513 | SIGEMPTYSET(set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i ] = 0; } while (0); | |||
514 | SIGADDSET(set, signo)((set).__bits[(((signo) - 1) >> 5)] |= (1 << (((signo ) - 1) & 31))); | |||
515 | sigqueue_delete_set(sq, &set); | |||
516 | } | |||
517 | ||||
518 | /* Remove a set of signals for a process */ | |||
519 | static void | |||
520 | sigqueue_delete_set_proc(struct proc *p, const sigset_t *set) | |||
521 | { | |||
522 | sigqueue_t worklist; | |||
523 | struct thread *td0; | |||
524 | ||||
525 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
526 | ||||
527 | sigqueue_init(&worklist, NULL((void *)0)); | |||
528 | sigqueue_move_set(&p->p_sigqueue, &worklist, set); | |||
529 | ||||
530 | FOREACH_THREAD_IN_PROC(p, td0)for (((td0)) = (((&(p)->p_threads))->tqh_first); (( td0)); ((td0)) = ((((td0)))->td_plist.tqe_next)) | |||
531 | sigqueue_move_set(&td0->td_sigqueue, &worklist, set); | |||
532 | ||||
533 | sigqueue_flush(&worklist); | |||
534 | } | |||
535 | ||||
536 | void | |||
537 | sigqueue_delete_proc(struct proc *p, int signo) | |||
538 | { | |||
539 | sigset_t set; | |||
540 | ||||
541 | SIGEMPTYSET(set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i ] = 0; } while (0); | |||
542 | SIGADDSET(set, signo)((set).__bits[(((signo) - 1) >> 5)] |= (1 << (((signo ) - 1) & 31))); | |||
543 | sigqueue_delete_set_proc(p, &set); | |||
544 | } | |||
545 | ||||
546 | static void | |||
547 | sigqueue_delete_stopmask_proc(struct proc *p) | |||
548 | { | |||
549 | sigset_t set; | |||
550 | ||||
551 | SIGEMPTYSET(set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i ] = 0; } while (0); | |||
552 | SIGADDSET(set, SIGSTOP)((set).__bits[(((17) - 1) >> 5)] |= (1 << (((17) - 1) & 31))); | |||
553 | SIGADDSET(set, SIGTSTP)((set).__bits[(((18) - 1) >> 5)] |= (1 << (((18) - 1) & 31))); | |||
554 | SIGADDSET(set, SIGTTIN)((set).__bits[(((21) - 1) >> 5)] |= (1 << (((21) - 1) & 31))); | |||
555 | SIGADDSET(set, SIGTTOU)((set).__bits[(((22) - 1) >> 5)] |= (1 << (((22) - 1) & 31))); | |||
556 | sigqueue_delete_set_proc(p, &set); | |||
557 | } | |||
558 | ||||
559 | /* | |||
560 | * Determine signal that should be delivered to thread td, the current | |||
561 | * thread, 0 if none. If there is a pending stop signal with default | |||
562 | * action, the process stops in issignal(). | |||
563 | */ | |||
564 | int | |||
565 | cursig(struct thread *td) | |||
566 | { | |||
567 | PROC_LOCK_ASSERT(td->td_proc, MA_OWNED)(void)0; | |||
568 | mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED)(void)0; | |||
569 | THREAD_LOCK_ASSERT(td, MA_NOTOWNED)do { struct mtx *__m = (td)->td_lock; if (__m != &blocked_lock ) (void)0; } while (0); | |||
570 | return (SIGPENDING(td)((!(__sigisempty(&((td)->td_sigqueue.sq_signals))) && !sigsetmasked(&(td)->td_sigqueue.sq_signals, &(td )->td_sigmask)) || (!(__sigisempty(&((td)->td_proc-> p_sigqueue.sq_signals))) && !sigsetmasked(&(td)-> td_proc->p_sigqueue.sq_signals, &(td)->td_sigmask)) ) ? issignal(td) : 0); | |||
571 | } | |||
572 | ||||
573 | /* | |||
574 | * Arrange for ast() to handle unmasked pending signals on return to user | |||
575 | * mode. This must be called whenever a signal is added to td_sigqueue or | |||
576 | * unmasked in td_sigmask. | |||
577 | */ | |||
578 | void | |||
579 | signotify(struct thread *td) | |||
580 | { | |||
581 | struct proc *p; | |||
582 | ||||
583 | p = td->td_proc; | |||
584 | ||||
585 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
586 | ||||
587 | if (SIGPENDING(td)((!(__sigisempty(&((td)->td_sigqueue.sq_signals))) && !sigsetmasked(&(td)->td_sigqueue.sq_signals, &(td )->td_sigmask)) || (!(__sigisempty(&((td)->td_proc-> p_sigqueue.sq_signals))) && !sigsetmasked(&(td)-> td_proc->p_sigqueue.sq_signals, &(td)->td_sigmask)) )) { | |||
588 | thread_lock(td)thread_lock_flags_((td), 0, "/usr/src/sys/kern/kern_sig.c", 588 ); | |||
589 | td->td_flags |= TDF_NEEDSIGCHK0x00020000 | TDF_ASTPENDING0x00000800; | |||
590 | thread_unlock(td)do { if ((((((((td)->td_lock)))))->lock_object.lo_data != 0)) (((((td)->td_lock))))->lock_object.lo_data--; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) ((((td)->td_lock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&((((((td)->td_lock)))))->mtx_lock , 0x00000004); } spinlock_exit(); } while (0); | |||
591 | } | |||
592 | } | |||
593 | ||||
594 | int | |||
595 | sigonstack(size_t sp) | |||
596 | { | |||
597 | struct thread *td = curthread(__curthread()); | |||
598 | ||||
599 | return ((td->td_pflags & TDP_ALTSTACK0x00000020) ? | |||
600 | #if defined(COMPAT_43) | |||
601 | ((td->td_sigstk.ss_size == 0) ? | |||
602 | (td->td_sigstk.ss_flags & SS_ONSTACK0x0001) : | |||
603 | ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)) | |||
604 | #else | |||
605 | ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size) | |||
606 | #endif | |||
607 | : 0); | |||
608 | } | |||
609 | ||||
610 | static __inline int | |||
611 | sigprop(int sig) | |||
612 | { | |||
613 | ||||
614 | if (sig > 0 && sig < NSIG32) | |||
615 | return (sigproptbl[_SIG_IDX(sig)((sig) - 1)]); | |||
616 | return (0); | |||
617 | } | |||
618 | ||||
619 | int | |||
620 | sig_ffs(sigset_t *set) | |||
621 | { | |||
622 | int i; | |||
623 | ||||
624 | for (i = 0; i < _SIG_WORDS4; i++) | |||
625 | if (set->__bits[i]) | |||
626 | return (ffs(set->__bits[i])__builtin_ffs(set->__bits[i]) + (i * 32)); | |||
627 | return (0); | |||
628 | } | |||
629 | ||||
630 | static bool | |||
631 | sigact_flag_test(const struct sigaction *act, int flag) | |||
632 | { | |||
633 | ||||
634 | /* | |||
635 | * SA_SIGINFO is reset when signal disposition is set to | |||
636 | * ignore or default. Other flags are kept according to user | |||
637 | * settings. | |||
638 | */ | |||
639 | return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO0x0040 || | |||
640 | ((__sighandler_t *)act->sa_sigaction__sigaction_u.__sa_sigaction != SIG_IGN((__sighandler_t *)1) && | |||
641 | (__sighandler_t *)act->sa_sigaction__sigaction_u.__sa_sigaction != SIG_DFL((__sighandler_t *)0)))); | |||
642 | } | |||
643 | ||||
644 | /* | |||
645 | * kern_sigaction | |||
646 | * sigaction | |||
647 | * freebsd4_sigaction | |||
648 | * osigaction | |||
649 | */ | |||
650 | int | |||
651 | kern_sigaction(struct thread *td, int sig, const struct sigaction *act, | |||
652 | struct sigaction *oact, int flags) | |||
653 | { | |||
654 | struct sigacts *ps; | |||
655 | struct proc *p = td->td_proc; | |||
656 | ||||
657 | if (!_SIG_VALID(sig)((sig) <= 128 && (sig) > 0)) | |||
658 | return (EINVAL22); | |||
659 | if (act != NULL((void *)0) && act->sa_handler__sigaction_u.__sa_handler != SIG_DFL((__sighandler_t *)0) && | |||
660 | act->sa_handler__sigaction_u.__sa_handler != SIG_IGN((__sighandler_t *)1) && (act->sa_flags & ~(SA_ONSTACK0x0001 | | |||
661 | SA_RESTART0x0002 | SA_RESETHAND0x0004 | SA_NOCLDSTOP0x0008 | SA_NODEFER0x0010 | | |||
662 | SA_NOCLDWAIT0x0020 | SA_SIGINFO0x0040)) != 0) | |||
663 | return (EINVAL22); | |||
664 | ||||
665 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
666 | ps = p->p_sigacts; | |||
667 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
668 | if (oact) { | |||
669 | oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)((sig) - 1)]; | |||
670 | oact->sa_flags = 0; | |||
671 | if (SIGISMEMBER(ps->ps_sigonstack, sig)((ps->ps_sigonstack).__bits[(((sig) - 1) >> 5)] & (1 << (((sig) - 1) & 31)))) | |||
672 | oact->sa_flags |= SA_ONSTACK0x0001; | |||
673 | if (!SIGISMEMBER(ps->ps_sigintr, sig)((ps->ps_sigintr).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31)))) | |||
674 | oact->sa_flags |= SA_RESTART0x0002; | |||
675 | if (SIGISMEMBER(ps->ps_sigreset, sig)((ps->ps_sigreset).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31)))) | |||
676 | oact->sa_flags |= SA_RESETHAND0x0004; | |||
677 | if (SIGISMEMBER(ps->ps_signodefer, sig)((ps->ps_signodefer).__bits[(((sig) - 1) >> 5)] & (1 << (((sig) - 1) & 31)))) | |||
678 | oact->sa_flags |= SA_NODEFER0x0010; | |||
679 | if (SIGISMEMBER(ps->ps_siginfo, sig)((ps->ps_siginfo).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31)))) { | |||
680 | oact->sa_flags |= SA_SIGINFO0x0040; | |||
681 | oact->sa_sigaction__sigaction_u.__sa_sigaction = | |||
682 | (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)]; | |||
683 | } else | |||
684 | oact->sa_handler__sigaction_u.__sa_handler = ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)]; | |||
685 | if (sig == SIGCHLD20 && ps->ps_flag & PS_NOCLDSTOP0x0002) | |||
686 | oact->sa_flags |= SA_NOCLDSTOP0x0008; | |||
687 | if (sig == SIGCHLD20 && ps->ps_flag & PS_NOCLDWAIT0x0001) | |||
688 | oact->sa_flags |= SA_NOCLDWAIT0x0020; | |||
689 | } | |||
690 | if (act) { | |||
691 | if ((sig == SIGKILL9 || sig == SIGSTOP17) && | |||
692 | act->sa_handler__sigaction_u.__sa_handler != SIG_DFL((__sighandler_t *)0)) { | |||
693 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
694 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
695 | return (EINVAL22); | |||
696 | } | |||
697 | ||||
698 | /* | |||
699 | * Change setting atomically. | |||
700 | */ | |||
701 | ||||
702 | ps->ps_catchmask[_SIG_IDX(sig)((sig) - 1)] = act->sa_mask; | |||
703 | SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)])((ps->ps_catchmask[((sig) - 1)]).__bits[(((9) - 1) >> 5)] &= ~(1 << (((9) - 1) & 31))), ((ps->ps_catchmask [((sig) - 1)]).__bits[(((17) - 1) >> 5)] &= ~(1 << (((17) - 1) & 31))); | |||
704 | if (sigact_flag_test(act, SA_SIGINFO0x0040)) { | |||
705 | ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] = | |||
706 | (__sighandler_t *)act->sa_sigaction__sigaction_u.__sa_sigaction; | |||
707 | SIGADDSET(ps->ps_siginfo, sig)((ps->ps_siginfo).__bits[(((sig) - 1) >> 5)] |= (1 << (((sig) - 1) & 31))); | |||
708 | } else { | |||
709 | ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] = act->sa_handler__sigaction_u.__sa_handler; | |||
710 | SIGDELSET(ps->ps_siginfo, sig)((ps->ps_siginfo).__bits[(((sig) - 1) >> 5)] &= ~ (1 << (((sig) - 1) & 31))); | |||
711 | } | |||
712 | if (!sigact_flag_test(act, SA_RESTART0x0002)) | |||
713 | SIGADDSET(ps->ps_sigintr, sig)((ps->ps_sigintr).__bits[(((sig) - 1) >> 5)] |= (1 << (((sig) - 1) & 31))); | |||
714 | else | |||
715 | SIGDELSET(ps->ps_sigintr, sig)((ps->ps_sigintr).__bits[(((sig) - 1) >> 5)] &= ~ (1 << (((sig) - 1) & 31))); | |||
716 | if (sigact_flag_test(act, SA_ONSTACK0x0001)) | |||
717 | SIGADDSET(ps->ps_sigonstack, sig)((ps->ps_sigonstack).__bits[(((sig) - 1) >> 5)] |= ( 1 << (((sig) - 1) & 31))); | |||
718 | else | |||
719 | SIGDELSET(ps->ps_sigonstack, sig)((ps->ps_sigonstack).__bits[(((sig) - 1) >> 5)] &= ~(1 << (((sig) - 1) & 31))); | |||
720 | if (sigact_flag_test(act, SA_RESETHAND0x0004)) | |||
721 | SIGADDSET(ps->ps_sigreset, sig)((ps->ps_sigreset).__bits[(((sig) - 1) >> 5)] |= (1 << (((sig) - 1) & 31))); | |||
722 | else | |||
723 | SIGDELSET(ps->ps_sigreset, sig)((ps->ps_sigreset).__bits[(((sig) - 1) >> 5)] &= ~(1 << (((sig) - 1) & 31))); | |||
724 | if (sigact_flag_test(act, SA_NODEFER0x0010)) | |||
725 | SIGADDSET(ps->ps_signodefer, sig)((ps->ps_signodefer).__bits[(((sig) - 1) >> 5)] |= ( 1 << (((sig) - 1) & 31))); | |||
726 | else | |||
727 | SIGDELSET(ps->ps_signodefer, sig)((ps->ps_signodefer).__bits[(((sig) - 1) >> 5)] &= ~(1 << (((sig) - 1) & 31))); | |||
728 | if (sig == SIGCHLD20) { | |||
729 | if (act->sa_flags & SA_NOCLDSTOP0x0008) | |||
730 | ps->ps_flag |= PS_NOCLDSTOP0x0002; | |||
731 | else | |||
732 | ps->ps_flag &= ~PS_NOCLDSTOP0x0002; | |||
733 | if (act->sa_flags & SA_NOCLDWAIT0x0020) { | |||
734 | /* | |||
735 | * Paranoia: since SA_NOCLDWAIT is implemented | |||
736 | * by reparenting the dying child to PID 1 (and | |||
737 | * trust it to reap the zombie), PID 1 itself | |||
738 | * is forbidden to set SA_NOCLDWAIT. | |||
739 | */ | |||
740 | if (p->p_pid == 1) | |||
741 | ps->ps_flag &= ~PS_NOCLDWAIT0x0001; | |||
742 | else | |||
743 | ps->ps_flag |= PS_NOCLDWAIT0x0001; | |||
744 | } else | |||
745 | ps->ps_flag &= ~PS_NOCLDWAIT0x0001; | |||
746 | if (ps->ps_sigact[_SIG_IDX(SIGCHLD)((20) - 1)] == SIG_IGN((__sighandler_t *)1)) | |||
747 | ps->ps_flag |= PS_CLDSIGIGN0x0004; | |||
748 | else | |||
749 | ps->ps_flag &= ~PS_CLDSIGIGN0x0004; | |||
750 | } | |||
751 | /* | |||
752 | * Set bit in ps_sigignore for signals that are set to SIG_IGN, | |||
753 | * and for signals set to SIG_DFL where the default is to | |||
754 | * ignore. However, don't put SIGCONT in ps_sigignore, as we | |||
755 | * have to restart the process. | |||
756 | */ | |||
757 | if (ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_IGN((__sighandler_t *)1) || | |||
758 | (sigprop(sig) & SA_IGNORE0x10 && | |||
759 | ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_DFL((__sighandler_t *)0))) { | |||
760 | /* never to be seen again */ | |||
761 | sigqueue_delete_proc(p, sig); | |||
762 | if (sig != SIGCONT19) | |||
763 | /* easier in psignal */ | |||
764 | SIGADDSET(ps->ps_sigignore, sig)((ps->ps_sigignore).__bits[(((sig) - 1) >> 5)] |= (1 << (((sig) - 1) & 31))); | |||
765 | SIGDELSET(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] &= ~(1 << (((sig) - 1) & 31))); | |||
766 | } else { | |||
767 | SIGDELSET(ps->ps_sigignore, sig)((ps->ps_sigignore).__bits[(((sig) - 1) >> 5)] &= ~(1 << (((sig) - 1) & 31))); | |||
768 | if (ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_DFL((__sighandler_t *)0)) | |||
769 | SIGDELSET(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] &= ~(1 << (((sig) - 1) & 31))); | |||
770 | else | |||
771 | SIGADDSET(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] |= (1 << (((sig) - 1) & 31))); | |||
772 | } | |||
773 | #ifdef COMPAT_FREEBSD41 | |||
774 | if (ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_IGN((__sighandler_t *)1) || | |||
775 | ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_DFL((__sighandler_t *)0) || | |||
776 | (flags & KSA_FREEBSD40x0002) == 0) | |||
777 | SIGDELSET(ps->ps_freebsd4, sig)((ps->ps_freebsd4).__bits[(((sig) - 1) >> 5)] &= ~(1 << (((sig) - 1) & 31))); | |||
778 | else | |||
779 | SIGADDSET(ps->ps_freebsd4, sig)((ps->ps_freebsd4).__bits[(((sig) - 1) >> 5)] |= (1 << (((sig) - 1) & 31))); | |||
780 | #endif | |||
781 | #ifdef COMPAT_43 | |||
782 | if (ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_IGN((__sighandler_t *)1) || | |||
783 | ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_DFL((__sighandler_t *)0) || | |||
784 | (flags & KSA_OSIGSET0x0001) == 0) | |||
785 | SIGDELSET(ps->ps_osigset, sig)((ps->ps_osigset).__bits[(((sig) - 1) >> 5)] &= ~ (1 << (((sig) - 1) & 31))); | |||
786 | else | |||
787 | SIGADDSET(ps->ps_osigset, sig)((ps->ps_osigset).__bits[(((sig) - 1) >> 5)] |= (1 << (((sig) - 1) & 31))); | |||
788 | #endif | |||
789 | } | |||
790 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
791 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
792 | return (0); | |||
793 | } | |||
794 | ||||
795 | #ifndef _SYS_SYSPROTO_H_ | |||
796 | struct sigaction_args { | |||
797 | int sig; | |||
798 | struct sigaction *act; | |||
799 | struct sigaction *oact; | |||
800 | }; | |||
801 | #endif | |||
802 | int | |||
803 | sys_sigaction(td, uap) | |||
804 | struct thread *td; | |||
805 | register struct sigaction_args *uap; | |||
806 | { | |||
807 | struct sigaction act, oact; | |||
808 | register struct sigaction *actp, *oactp; | |||
809 | int error; | |||
810 | ||||
811 | actp = (uap->act != NULL((void *)0)) ? &act : NULL((void *)0); | |||
812 | oactp = (uap->oact != NULL((void *)0)) ? &oact : NULL((void *)0); | |||
813 | if (actp) { | |||
814 | error = copyin(uap->act, actp, sizeof(act)); | |||
815 | if (error) | |||
816 | return (error); | |||
817 | } | |||
818 | error = kern_sigaction(td, uap->sig, actp, oactp, 0); | |||
819 | if (oactp && !error) | |||
820 | error = copyout(oactp, uap->oact, sizeof(oact)); | |||
821 | return (error); | |||
822 | } | |||
823 | ||||
824 | #ifdef COMPAT_FREEBSD41 | |||
825 | #ifndef _SYS_SYSPROTO_H_ | |||
826 | struct freebsd4_sigaction_args { | |||
827 | int sig; | |||
828 | struct sigaction *act; | |||
829 | struct sigaction *oact; | |||
830 | }; | |||
831 | #endif | |||
832 | int | |||
833 | freebsd4_sigaction(td, uap) | |||
834 | struct thread *td; | |||
835 | register struct freebsd4_sigaction_args *uap; | |||
836 | { | |||
837 | struct sigaction act, oact; | |||
838 | register struct sigaction *actp, *oactp; | |||
839 | int error; | |||
840 | ||||
841 | ||||
842 | actp = (uap->act != NULL((void *)0)) ? &act : NULL((void *)0); | |||
843 | oactp = (uap->oact != NULL((void *)0)) ? &oact : NULL((void *)0); | |||
844 | if (actp) { | |||
845 | error = copyin(uap->act, actp, sizeof(act)); | |||
846 | if (error) | |||
847 | return (error); | |||
848 | } | |||
849 | error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD40x0002); | |||
850 | if (oactp && !error) | |||
851 | error = copyout(oactp, uap->oact, sizeof(oact)); | |||
852 | return (error); | |||
853 | } | |||
854 | #endif /* COMAPT_FREEBSD4 */ | |||
855 | ||||
856 | #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */ | |||
857 | #ifndef _SYS_SYSPROTO_H_ | |||
858 | struct osigaction_args { | |||
859 | int signum; | |||
860 | struct osigaction *nsa; | |||
861 | struct osigaction *osa; | |||
862 | }; | |||
863 | #endif | |||
864 | int | |||
865 | osigaction(td, uap) | |||
866 | struct thread *td; | |||
867 | register struct osigaction_args *uap; | |||
868 | { | |||
869 | struct osigaction sa; | |||
870 | struct sigaction nsa, osa; | |||
871 | register struct sigaction *nsap, *osap; | |||
872 | int error; | |||
873 | ||||
874 | if (uap->signum <= 0 || uap->signum >= ONSIG32) | |||
875 | return (EINVAL22); | |||
876 | ||||
877 | nsap = (uap->nsa != NULL((void *)0)) ? &nsa : NULL((void *)0); | |||
878 | osap = (uap->osa != NULL((void *)0)) ? &osa : NULL((void *)0); | |||
879 | ||||
880 | if (nsap) { | |||
881 | error = copyin(uap->nsa, &sa, sizeof(sa)); | |||
882 | if (error) | |||
883 | return (error); | |||
884 | nsap->sa_handler__sigaction_u.__sa_handler = sa.sa_handler__sigaction_u.__sa_handler; | |||
885 | nsap->sa_flags = sa.sa_flags; | |||
886 | OSIG2SIG(sa.sa_mask, nsap->sa_mask)do { int __i; for (__i = 0; __i < 4; __i++) (nsap->sa_mask ).__bits[__i] = 0; } while (0); (nsap->sa_mask).__bits[0] = sa.sa_mask; | |||
887 | } | |||
888 | error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET0x0001); | |||
889 | if (osap && !error) { | |||
890 | sa.sa_handler__sigaction_u.__sa_handler = osap->sa_handler__sigaction_u.__sa_handler; | |||
891 | sa.sa_flags = osap->sa_flags; | |||
892 | SIG2OSIG(osap->sa_mask, sa.sa_mask)(sa.sa_mask = (osap->sa_mask).__bits[0]); | |||
893 | error = copyout(&sa, uap->osa, sizeof(sa)); | |||
894 | } | |||
895 | return (error); | |||
896 | } | |||
897 | ||||
898 | #if !defined(__i386__) | |||
899 | /* Avoid replicating the same stub everywhere */ | |||
900 | int | |||
901 | osigreturn(td, uap) | |||
902 | struct thread *td; | |||
903 | struct osigreturn_args *uap; | |||
904 | { | |||
905 | ||||
906 | return (nosys(td, (struct nosys_args *)uap)); | |||
907 | } | |||
908 | #endif | |||
909 | #endif /* COMPAT_43 */ | |||
910 | ||||
911 | /* | |||
912 | * Initialize signal state for process 0; | |||
913 | * set to ignore signals that are ignored by default. | |||
914 | */ | |||
915 | void | |||
916 | siginit(p) | |||
917 | struct proc *p; | |||
918 | { | |||
919 | register int i; | |||
920 | struct sigacts *ps; | |||
921 | ||||
922 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
923 | ps = p->p_sigacts; | |||
924 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
925 | for (i = 1; i <= NSIG32; i++) { | |||
926 | if (sigprop(i) & SA_IGNORE0x10 && i != SIGCONT19) { | |||
927 | SIGADDSET(ps->ps_sigignore, i)((ps->ps_sigignore).__bits[(((i) - 1) >> 5)] |= (1 << (((i) - 1) & 31))); | |||
928 | } | |||
929 | } | |||
930 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
931 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
932 | } | |||
933 | ||||
934 | /* | |||
935 | * Reset specified signal to the default disposition. | |||
936 | */ | |||
937 | static void | |||
938 | sigdflt(struct sigacts *ps, int sig) | |||
939 | { | |||
940 | ||||
941 | mtx_assert(&ps->ps_mtx, MA_OWNED)(void)0; | |||
942 | SIGDELSET(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] &= ~(1 << (((sig) - 1) & 31))); | |||
943 | if ((sigprop(sig) & SA_IGNORE0x10) != 0 && sig != SIGCONT19) | |||
944 | SIGADDSET(ps->ps_sigignore, sig)((ps->ps_sigignore).__bits[(((sig) - 1) >> 5)] |= (1 << (((sig) - 1) & 31))); | |||
945 | ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] = SIG_DFL((__sighandler_t *)0); | |||
946 | SIGDELSET(ps->ps_siginfo, sig)((ps->ps_siginfo).__bits[(((sig) - 1) >> 5)] &= ~ (1 << (((sig) - 1) & 31))); | |||
947 | } | |||
948 | ||||
949 | /* | |||
950 | * Reset signals for an exec of the specified process. | |||
951 | */ | |||
952 | void | |||
953 | execsigs(struct proc *p) | |||
954 | { | |||
955 | sigset_t osigignore; | |||
956 | struct sigacts *ps; | |||
957 | int sig; | |||
958 | struct thread *td; | |||
959 | ||||
960 | /* | |||
961 | * Reset caught signals. Held signals remain held | |||
962 | * through td_sigmask (unless they were caught, | |||
963 | * and are now ignored by default). | |||
964 | */ | |||
965 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
966 | td = FIRST_THREAD_IN_PROC(p)((&(p)->p_threads)->tqh_first); | |||
967 | ps = p->p_sigacts; | |||
968 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
969 | while (SIGNOTEMPTY(ps->ps_sigcatch)(!__sigisempty(&(ps->ps_sigcatch)))) { | |||
970 | sig = sig_ffs(&ps->ps_sigcatch); | |||
971 | sigdflt(ps, sig); | |||
972 | if ((sigprop(sig) & SA_IGNORE0x10) != 0) | |||
973 | sigqueue_delete_proc(p, sig); | |||
974 | } | |||
975 | ||||
976 | /* | |||
977 | * As CloudABI processes cannot modify signal handlers, fully | |||
978 | * reset all signals to their default behavior. Do ignore | |||
979 | * SIGPIPE, as it would otherwise be impossible to recover from | |||
980 | * writes to broken pipes and sockets. | |||
981 | */ | |||
982 | if (SV_PROC_ABI(p)((p)->p_sysent->sv_flags & 0xff) == SV_ABI_CLOUDABI17) { | |||
983 | osigignore = ps->ps_sigignore; | |||
984 | while (SIGNOTEMPTY(osigignore)(!__sigisempty(&(osigignore)))) { | |||
985 | sig = sig_ffs(&osigignore); | |||
986 | SIGDELSET(osigignore, sig)((osigignore).__bits[(((sig) - 1) >> 5)] &= ~(1 << (((sig) - 1) & 31))); | |||
987 | if (sig != SIGPIPE13) | |||
988 | sigdflt(ps, sig); | |||
989 | } | |||
990 | SIGADDSET(ps->ps_sigignore, SIGPIPE)((ps->ps_sigignore).__bits[(((13) - 1) >> 5)] |= (1 << (((13) - 1) & 31))); | |||
991 | } | |||
992 | ||||
993 | /* | |||
994 | * Reset stack state to the user stack. | |||
995 | * Clear set of signals caught on the signal stack. | |||
996 | */ | |||
997 | td->td_sigstk.ss_flags = SS_DISABLE0x0004; | |||
998 | td->td_sigstk.ss_size = 0; | |||
999 | td->td_sigstk.ss_sp = 0; | |||
1000 | td->td_pflags &= ~TDP_ALTSTACK0x00000020; | |||
1001 | /* | |||
1002 | * Reset no zombies if child dies flag as Solaris does. | |||
1003 | */ | |||
1004 | ps->ps_flag &= ~(PS_NOCLDWAIT0x0001 | PS_CLDSIGIGN0x0004); | |||
1005 | if (ps->ps_sigact[_SIG_IDX(SIGCHLD)((20) - 1)] == SIG_IGN((__sighandler_t *)1)) | |||
1006 | ps->ps_sigact[_SIG_IDX(SIGCHLD)((20) - 1)] = SIG_DFL((__sighandler_t *)0); | |||
1007 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1008 | } | |||
1009 | ||||
1010 | /* | |||
1011 | * kern_sigprocmask() | |||
1012 | * | |||
1013 | * Manipulate signal mask. | |||
1014 | */ | |||
1015 | int | |||
1016 | kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset, | |||
1017 | int flags) | |||
1018 | { | |||
1019 | sigset_t new_block, oset1; | |||
1020 | struct proc *p; | |||
1021 | int error; | |||
1022 | ||||
1023 | p = td->td_proc; | |||
1024 | if ((flags & SIGPROCMASK_PROC_LOCKED0x0002) != 0) | |||
1025 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
1026 | else | |||
1027 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
1028 | mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0(void)0 | |||
1029 | ? MA_OWNED : MA_NOTOWNED)(void)0; | |||
1030 | if (oset != NULL((void *)0)) | |||
1031 | *oset = td->td_sigmask; | |||
1032 | ||||
1033 | error = 0; | |||
1034 | if (set != NULL((void *)0)) { | |||
1035 | switch (how) { | |||
1036 | case SIG_BLOCK1: | |||
1037 | SIG_CANTMASK(*set)((*set).__bits[(((9) - 1) >> 5)] &= ~(1 << (( (9) - 1) & 31))), ((*set).__bits[(((17) - 1) >> 5)] &= ~(1 << (((17) - 1) & 31))); | |||
1038 | oset1 = td->td_sigmask; | |||
1039 | SIGSETOR(td->td_sigmask, *set)do { int __i; for (__i = 0; __i < 4; __i++) (td->td_sigmask ).__bits[__i] |= (*set).__bits[__i]; } while (0); | |||
1040 | new_block = td->td_sigmask; | |||
1041 | SIGSETNAND(new_block, oset1)do { int __i; for (__i = 0; __i < 4; __i++) (new_block).__bits [__i] &= ~(oset1).__bits[__i]; } while (0); | |||
1042 | break; | |||
1043 | case SIG_UNBLOCK2: | |||
1044 | SIGSETNAND(td->td_sigmask, *set)do { int __i; for (__i = 0; __i < 4; __i++) (td->td_sigmask ).__bits[__i] &= ~(*set).__bits[__i]; } while (0); | |||
1045 | signotify(td); | |||
1046 | goto out; | |||
1047 | case SIG_SETMASK3: | |||
1048 | SIG_CANTMASK(*set)((*set).__bits[(((9) - 1) >> 5)] &= ~(1 << (( (9) - 1) & 31))), ((*set).__bits[(((17) - 1) >> 5)] &= ~(1 << (((17) - 1) & 31))); | |||
1049 | oset1 = td->td_sigmask; | |||
1050 | if (flags & SIGPROCMASK_OLD0x0001) | |||
1051 | SIGSETLO(td->td_sigmask, *set)((td->td_sigmask).__bits[0] = (*set).__bits[0]); | |||
1052 | else | |||
1053 | td->td_sigmask = *set; | |||
1054 | new_block = td->td_sigmask; | |||
1055 | SIGSETNAND(new_block, oset1)do { int __i; for (__i = 0; __i < 4; __i++) (new_block).__bits [__i] &= ~(oset1).__bits[__i]; } while (0); | |||
1056 | signotify(td); | |||
1057 | break; | |||
1058 | default: | |||
1059 | error = EINVAL22; | |||
1060 | goto out; | |||
1061 | } | |||
1062 | ||||
1063 | /* | |||
1064 | * The new_block set contains signals that were not previously | |||
1065 | * blocked, but are blocked now. | |||
1066 | * | |||
1067 | * In case we block any signal that was not previously blocked | |||
1068 | * for td, and process has the signal pending, try to schedule | |||
1069 | * signal delivery to some thread that does not block the | |||
1070 | * signal, possibly waking it up. | |||
1071 | */ | |||
1072 | if (p->p_numthreads != 1) | |||
1073 | reschedule_signals(p, new_block, flags); | |||
1074 | } | |||
1075 | ||||
1076 | out: | |||
1077 | if (!(flags & SIGPROCMASK_PROC_LOCKED0x0002)) | |||
1078 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1079 | return (error); | |||
1080 | } | |||
1081 | ||||
1082 | #ifndef _SYS_SYSPROTO_H_ | |||
1083 | struct sigprocmask_args { | |||
1084 | int how; | |||
1085 | const sigset_t *set; | |||
1086 | sigset_t *oset; | |||
1087 | }; | |||
1088 | #endif | |||
1089 | int | |||
1090 | sys_sigprocmask(td, uap) | |||
1091 | register struct thread *td; | |||
1092 | struct sigprocmask_args *uap; | |||
1093 | { | |||
1094 | sigset_t set, oset; | |||
1095 | sigset_t *setp, *osetp; | |||
1096 | int error; | |||
1097 | ||||
1098 | setp = (uap->set != NULL((void *)0)) ? &set : NULL((void *)0); | |||
1099 | osetp = (uap->oset != NULL((void *)0)) ? &oset : NULL((void *)0); | |||
1100 | if (setp) { | |||
1101 | error = copyin(uap->set, setp, sizeof(set)); | |||
1102 | if (error) | |||
1103 | return (error); | |||
1104 | } | |||
1105 | error = kern_sigprocmask(td, uap->how, setp, osetp, 0); | |||
1106 | if (osetp && !error) { | |||
1107 | error = copyout(osetp, uap->oset, sizeof(oset)); | |||
1108 | } | |||
1109 | return (error); | |||
1110 | } | |||
1111 | ||||
1112 | #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */ | |||
1113 | #ifndef _SYS_SYSPROTO_H_ | |||
1114 | struct osigprocmask_args { | |||
1115 | int how; | |||
1116 | osigset_t mask; | |||
1117 | }; | |||
1118 | #endif | |||
1119 | int | |||
1120 | osigprocmask(td, uap) | |||
1121 | register struct thread *td; | |||
1122 | struct osigprocmask_args *uap; | |||
1123 | { | |||
1124 | sigset_t set, oset; | |||
1125 | int error; | |||
1126 | ||||
1127 | OSIG2SIG(uap->mask, set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i ] = 0; } while (0); (set).__bits[0] = uap->mask; | |||
1128 | error = kern_sigprocmask(td, uap->how, &set, &oset, 1); | |||
1129 | SIG2OSIG(oset, td->td_retval[0])(td->td_uretoff.tdu_retval[0] = (oset).__bits[0]); | |||
1130 | return (error); | |||
1131 | } | |||
1132 | #endif /* COMPAT_43 */ | |||
1133 | ||||
1134 | int | |||
1135 | sys_sigwait(struct thread *td, struct sigwait_args *uap) | |||
1136 | { | |||
1137 | ksiginfo_t ksi; | |||
1138 | sigset_t set; | |||
1139 | int error; | |||
1140 | ||||
1141 | error = copyin(uap->set, &set, sizeof(set)); | |||
1142 | if (error) { | |||
1143 | td->td_retvaltd_uretoff.tdu_retval[0] = error; | |||
1144 | return (0); | |||
1145 | } | |||
1146 | ||||
1147 | error = kern_sigtimedwait(td, set, &ksi, NULL((void *)0)); | |||
1148 | if (error) { | |||
1149 | if (error == EINTR4 && td->td_proc->p_osrel < P_OSREL_SIGWAIT700000) | |||
1150 | error = ERESTART(-1); | |||
1151 | if (error == ERESTART(-1)) | |||
1152 | return (error); | |||
1153 | td->td_retvaltd_uretoff.tdu_retval[0] = error; | |||
1154 | return (0); | |||
1155 | } | |||
1156 | ||||
1157 | error = copyout(&ksi.ksi_signoksi_info.si_signo, uap->sig, sizeof(ksi.ksi_signoksi_info.si_signo)); | |||
1158 | td->td_retvaltd_uretoff.tdu_retval[0] = error; | |||
1159 | return (0); | |||
1160 | } | |||
1161 | ||||
1162 | int | |||
1163 | sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap) | |||
1164 | { | |||
1165 | struct timespec ts; | |||
1166 | struct timespec *timeout; | |||
1167 | sigset_t set; | |||
1168 | ksiginfo_t ksi; | |||
1169 | int error; | |||
1170 | ||||
1171 | if (uap->timeout) { | |||
1172 | error = copyin(uap->timeout, &ts, sizeof(ts)); | |||
1173 | if (error) | |||
1174 | return (error); | |||
1175 | ||||
1176 | timeout = &ts; | |||
1177 | } else | |||
1178 | timeout = NULL((void *)0); | |||
1179 | ||||
1180 | error = copyin(uap->set, &set, sizeof(set)); | |||
1181 | if (error) | |||
1182 | return (error); | |||
1183 | ||||
1184 | error = kern_sigtimedwait(td, set, &ksi, timeout); | |||
1185 | if (error) | |||
1186 | return (error); | |||
1187 | ||||
1188 | if (uap->info) | |||
1189 | error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t)); | |||
1190 | ||||
1191 | if (error == 0) | |||
1192 | td->td_retvaltd_uretoff.tdu_retval[0] = ksi.ksi_signoksi_info.si_signo; | |||
1193 | return (error); | |||
1194 | } | |||
1195 | ||||
1196 | int | |||
1197 | sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap) | |||
1198 | { | |||
1199 | ksiginfo_t ksi; | |||
1200 | sigset_t set; | |||
1201 | int error; | |||
1202 | ||||
1203 | error = copyin(uap->set, &set, sizeof(set)); | |||
1204 | if (error) | |||
| ||||
1205 | return (error); | |||
1206 | ||||
1207 | error = kern_sigtimedwait(td, set, &ksi, NULL((void *)0)); | |||
1208 | if (error) | |||
1209 | return (error); | |||
1210 | ||||
1211 | if (uap->info) | |||
1212 | error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t)); | |||
| ||||
1213 | ||||
1214 | if (error == 0) | |||
1215 | td->td_retvaltd_uretoff.tdu_retval[0] = ksi.ksi_signoksi_info.si_signo; | |||
1216 | return (error); | |||
1217 | } | |||
1218 | ||||
1219 | int | |||
1220 | kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi, | |||
1221 | struct timespec *timeout) | |||
1222 | { | |||
1223 | struct sigacts *ps; | |||
1224 | sigset_t saved_mask, new_block; | |||
1225 | struct proc *p; | |||
1226 | int error, sig, timo, timevalid = 0; | |||
1227 | struct timespec rts, ets, ts; | |||
1228 | struct timeval tv; | |||
1229 | ||||
1230 | p = td->td_proc; | |||
1231 | error = 0; | |||
1232 | ets.tv_sec = 0; | |||
1233 | ets.tv_nsec = 0; | |||
1234 | ||||
1235 | if (timeout != NULL((void *)0)) { | |||
1236 | if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) { | |||
1237 | timevalid = 1; | |||
1238 | getnanouptime(&rts); | |||
1239 | ets = rts; | |||
1240 | timespecadd(&ets, timeout)do { (&ets)->tv_sec += (timeout)->tv_sec; (&ets )->tv_nsec += (timeout)->tv_nsec; if ((&ets)->tv_nsec >= 1000000000) { (&ets)->tv_sec++; (&ets)-> tv_nsec -= 1000000000; } } while (0); | |||
1241 | } | |||
1242 | } | |||
1243 | ksiginfo_init(ksi)do { bzero(ksi, sizeof(ksiginfo_t)); } while(0); | |||
1244 | /* Some signals can not be waited for. */ | |||
1245 | SIG_CANTMASK(waitset)((waitset).__bits[(((9) - 1) >> 5)] &= ~(1 << (((9) - 1) & 31))), ((waitset).__bits[(((17) - 1) >> 5)] &= ~(1 << (((17) - 1) & 31))); | |||
1246 | ps = p->p_sigacts; | |||
1247 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
1248 | saved_mask = td->td_sigmask; | |||
1249 | SIGSETNAND(td->td_sigmask, waitset)do { int __i; for (__i = 0; __i < 4; __i++) (td->td_sigmask ).__bits[__i] &= ~(waitset).__bits[__i]; } while (0); | |||
1250 | for (;;) { | |||
1251 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
1252 | sig = cursig(td); | |||
1253 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1254 | KASSERT(sig >= 0, ("sig %d", sig))do { } while (0); | |||
1255 | if (sig != 0 && SIGISMEMBER(waitset, sig)((waitset).__bits[(((sig) - 1) >> 5)] & (1 << (((sig) - 1) & 31)))) { | |||
1256 | if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 || | |||
1257 | sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) { | |||
1258 | error = 0; | |||
1259 | break; | |||
1260 | } | |||
1261 | } | |||
1262 | ||||
1263 | if (error != 0) | |||
1264 | break; | |||
1265 | ||||
1266 | /* | |||
1267 | * POSIX says this must be checked after looking for pending | |||
1268 | * signals. | |||
1269 | */ | |||
1270 | if (timeout != NULL((void *)0)) { | |||
1271 | if (!timevalid) { | |||
1272 | error = EINVAL22; | |||
1273 | break; | |||
1274 | } | |||
1275 | getnanouptime(&rts); | |||
1276 | if (timespeccmp(&rts, &ets, >=)(((&rts)->tv_sec == (&ets)->tv_sec) ? ((&rts )->tv_nsec >= (&ets)->tv_nsec) : ((&rts)-> tv_sec >= (&ets)->tv_sec))) { | |||
1277 | error = EAGAIN35; | |||
1278 | break; | |||
1279 | } | |||
1280 | ts = ets; | |||
1281 | timespecsub(&ts, &rts)do { (&ts)->tv_sec -= (&rts)->tv_sec; (&ts) ->tv_nsec -= (&rts)->tv_nsec; if ((&ts)->tv_nsec < 0) { (&ts)->tv_sec--; (&ts)->tv_nsec += 1000000000 ; } } while (0); | |||
1282 | TIMESPEC_TO_TIMEVAL(&tv, &ts)do { (&tv)->tv_sec = (&ts)->tv_sec; (&tv)-> tv_usec = (&ts)->tv_nsec / 1000; } while (0); | |||
1283 | timo = tvtohz(&tv); | |||
1284 | } else { | |||
1285 | timo = 0; | |||
1286 | } | |||
1287 | ||||
1288 | error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo)_sleep((ps), &(&p->p_mtx)->lock_object, (((80) + 36)|0x100), ("sigwait"), tick_sbt * (timo), 0, 0x0100); | |||
1289 | ||||
1290 | if (timeout != NULL((void *)0)) { | |||
1291 | if (error == ERESTART(-1)) { | |||
1292 | /* Timeout can not be restarted. */ | |||
1293 | error = EINTR4; | |||
1294 | } else if (error == EAGAIN35) { | |||
1295 | /* We will calculate timeout by ourself. */ | |||
1296 | error = 0; | |||
1297 | } | |||
1298 | } | |||
1299 | } | |||
1300 | ||||
1301 | new_block = saved_mask; | |||
1302 | SIGSETNAND(new_block, td->td_sigmask)do { int __i; for (__i = 0; __i < 4; __i++) (new_block).__bits [__i] &= ~(td->td_sigmask).__bits[__i]; } while (0); | |||
1303 | td->td_sigmask = saved_mask; | |||
1304 | /* | |||
1305 | * Fewer signals can be delivered to us, reschedule signal | |||
1306 | * notification. | |||
1307 | */ | |||
1308 | if (p->p_numthreads != 1) | |||
1309 | reschedule_signals(p, new_block, 0); | |||
1310 | ||||
1311 | if (error == 0) { | |||
1312 | SDT_PROBE2(proc, , , signal__clear, sig, ksi)do { if (__builtin_expect((sdt_proc___signal__clear->id), 0 )) (*sdt_probe_func)(sdt_proc___signal__clear->id, (uintptr_t ) sig, (uintptr_t) ksi, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t ) 0); } while (0); | |||
1313 | ||||
1314 | if (ksi->ksi_codeksi_info.si_code == SI_TIMER0x10003) | |||
1315 | itimer_accept(p, ksi->ksi_timeridksi_info._reason._timer._timerid, ksi); | |||
1316 | ||||
1317 | #ifdef KTRACE1 | |||
1318 | if (KTRPOINT(td, KTR_PSIG)((((td))->td_proc->p_traceflag & (1 << (5))) && !((td)->td_pflags & 0x00000004))) { | |||
1319 | sig_t action; | |||
1320 | ||||
1321 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
1322 | action = ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)]; | |||
1323 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1324 | ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_codeksi_info.si_code); | |||
1325 | } | |||
1326 | #endif | |||
1327 | if (sig == SIGKILL9) | |||
1328 | sigexit(td, sig); | |||
1329 | } | |||
1330 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1331 | return (error); | |||
1332 | } | |||
1333 | ||||
1334 | #ifndef _SYS_SYSPROTO_H_ | |||
1335 | struct sigpending_args { | |||
1336 | sigset_t *set; | |||
1337 | }; | |||
1338 | #endif | |||
1339 | int | |||
1340 | sys_sigpending(td, uap) | |||
1341 | struct thread *td; | |||
1342 | struct sigpending_args *uap; | |||
1343 | { | |||
1344 | struct proc *p = td->td_proc; | |||
1345 | sigset_t pending; | |||
1346 | ||||
1347 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
1348 | pending = p->p_sigqueue.sq_signals; | |||
1349 | SIGSETOR(pending, td->td_sigqueue.sq_signals)do { int __i; for (__i = 0; __i < 4; __i++) (pending).__bits [__i] |= (td->td_sigqueue.sq_signals).__bits[__i]; } while (0); | |||
1350 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1351 | return (copyout(&pending, uap->set, sizeof(sigset_t))); | |||
1352 | } | |||
1353 | ||||
1354 | #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */ | |||
1355 | #ifndef _SYS_SYSPROTO_H_ | |||
1356 | struct osigpending_args { | |||
1357 | int dummy; | |||
1358 | }; | |||
1359 | #endif | |||
1360 | int | |||
1361 | osigpending(td, uap) | |||
1362 | struct thread *td; | |||
1363 | struct osigpending_args *uap; | |||
1364 | { | |||
1365 | struct proc *p = td->td_proc; | |||
1366 | sigset_t pending; | |||
1367 | ||||
1368 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
1369 | pending = p->p_sigqueue.sq_signals; | |||
1370 | SIGSETOR(pending, td->td_sigqueue.sq_signals)do { int __i; for (__i = 0; __i < 4; __i++) (pending).__bits [__i] |= (td->td_sigqueue.sq_signals).__bits[__i]; } while (0); | |||
1371 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1372 | SIG2OSIG(pending, td->td_retval[0])(td->td_uretoff.tdu_retval[0] = (pending).__bits[0]); | |||
1373 | return (0); | |||
1374 | } | |||
1375 | #endif /* COMPAT_43 */ | |||
1376 | ||||
1377 | #if defined(COMPAT_43) | |||
1378 | /* | |||
1379 | * Generalized interface signal handler, 4.3-compatible. | |||
1380 | */ | |||
1381 | #ifndef _SYS_SYSPROTO_H_ | |||
1382 | struct osigvec_args { | |||
1383 | int signum; | |||
1384 | struct sigvec *nsv; | |||
1385 | struct sigvec *osv; | |||
1386 | }; | |||
1387 | #endif | |||
1388 | /* ARGSUSED */ | |||
1389 | int | |||
1390 | osigvec(td, uap) | |||
1391 | struct thread *td; | |||
1392 | register struct osigvec_args *uap; | |||
1393 | { | |||
1394 | struct sigvec vec; | |||
1395 | struct sigaction nsa, osa; | |||
1396 | register struct sigaction *nsap, *osap; | |||
1397 | int error; | |||
1398 | ||||
1399 | if (uap->signum <= 0 || uap->signum >= ONSIG32) | |||
1400 | return (EINVAL22); | |||
1401 | nsap = (uap->nsv != NULL((void *)0)) ? &nsa : NULL((void *)0); | |||
1402 | osap = (uap->osv != NULL((void *)0)) ? &osa : NULL((void *)0); | |||
1403 | if (nsap) { | |||
1404 | error = copyin(uap->nsv, &vec, sizeof(vec)); | |||
1405 | if (error) | |||
1406 | return (error); | |||
1407 | nsap->sa_handler__sigaction_u.__sa_handler = vec.sv_handler; | |||
1408 | OSIG2SIG(vec.sv_mask, nsap->sa_mask)do { int __i; for (__i = 0; __i < 4; __i++) (nsap->sa_mask ).__bits[__i] = 0; } while (0); (nsap->sa_mask).__bits[0] = vec.sv_mask; | |||
1409 | nsap->sa_flags = vec.sv_flags; | |||
1410 | nsap->sa_flags ^= SA_RESTART0x0002; /* opposite of SV_INTERRUPT */ | |||
1411 | } | |||
1412 | error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET0x0001); | |||
1413 | if (osap && !error) { | |||
1414 | vec.sv_handler = osap->sa_handler__sigaction_u.__sa_handler; | |||
1415 | SIG2OSIG(osap->sa_mask, vec.sv_mask)(vec.sv_mask = (osap->sa_mask).__bits[0]); | |||
1416 | vec.sv_flags = osap->sa_flags; | |||
1417 | vec.sv_flags &= ~SA_NOCLDWAIT0x0020; | |||
1418 | vec.sv_flags ^= SA_RESTART0x0002; | |||
1419 | error = copyout(&vec, uap->osv, sizeof(vec)); | |||
1420 | } | |||
1421 | return (error); | |||
1422 | } | |||
1423 | ||||
1424 | #ifndef _SYS_SYSPROTO_H_ | |||
1425 | struct osigblock_args { | |||
1426 | int mask; | |||
1427 | }; | |||
1428 | #endif | |||
1429 | int | |||
1430 | osigblock(td, uap) | |||
1431 | register struct thread *td; | |||
1432 | struct osigblock_args *uap; | |||
1433 | { | |||
1434 | sigset_t set, oset; | |||
1435 | ||||
1436 | OSIG2SIG(uap->mask, set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i ] = 0; } while (0); (set).__bits[0] = uap->mask; | |||
1437 | kern_sigprocmask(td, SIG_BLOCK1, &set, &oset, 0); | |||
1438 | SIG2OSIG(oset, td->td_retval[0])(td->td_uretoff.tdu_retval[0] = (oset).__bits[0]); | |||
1439 | return (0); | |||
1440 | } | |||
1441 | ||||
1442 | #ifndef _SYS_SYSPROTO_H_ | |||
1443 | struct osigsetmask_args { | |||
1444 | int mask; | |||
1445 | }; | |||
1446 | #endif | |||
1447 | int | |||
1448 | osigsetmask(td, uap) | |||
1449 | struct thread *td; | |||
1450 | struct osigsetmask_args *uap; | |||
1451 | { | |||
1452 | sigset_t set, oset; | |||
1453 | ||||
1454 | OSIG2SIG(uap->mask, set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i ] = 0; } while (0); (set).__bits[0] = uap->mask; | |||
1455 | kern_sigprocmask(td, SIG_SETMASK3, &set, &oset, 0); | |||
1456 | SIG2OSIG(oset, td->td_retval[0])(td->td_uretoff.tdu_retval[0] = (oset).__bits[0]); | |||
1457 | return (0); | |||
1458 | } | |||
1459 | #endif /* COMPAT_43 */ | |||
1460 | ||||
1461 | /* | |||
1462 | * Suspend calling thread until signal, providing mask to be set in the | |||
1463 | * meantime. | |||
1464 | */ | |||
1465 | #ifndef _SYS_SYSPROTO_H_ | |||
1466 | struct sigsuspend_args { | |||
1467 | const sigset_t *sigmask; | |||
1468 | }; | |||
1469 | #endif | |||
1470 | /* ARGSUSED */ | |||
1471 | int | |||
1472 | sys_sigsuspend(td, uap) | |||
1473 | struct thread *td; | |||
1474 | struct sigsuspend_args *uap; | |||
1475 | { | |||
1476 | sigset_t mask; | |||
1477 | int error; | |||
1478 | ||||
1479 | error = copyin(uap->sigmask, &mask, sizeof(mask)); | |||
1480 | if (error) | |||
1481 | return (error); | |||
1482 | return (kern_sigsuspend(td, mask)); | |||
1483 | } | |||
1484 | ||||
1485 | int | |||
1486 | kern_sigsuspend(struct thread *td, sigset_t mask) | |||
1487 | { | |||
1488 | struct proc *p = td->td_proc; | |||
1489 | int has_sig, sig; | |||
1490 | ||||
1491 | /* | |||
1492 | * When returning from sigsuspend, we want | |||
1493 | * the old mask to be restored after the | |||
1494 | * signal handler has finished. Thus, we | |||
1495 | * save it here and mark the sigacts structure | |||
1496 | * to indicate this. | |||
1497 | */ | |||
1498 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
1499 | kern_sigprocmask(td, SIG_SETMASK3, &mask, &td->td_oldsigmask, | |||
1500 | SIGPROCMASK_PROC_LOCKED0x0002); | |||
1501 | td->td_pflags |= TDP_OLDMASK0x00000001; | |||
1502 | ||||
1503 | /* | |||
1504 | * Process signals now. Otherwise, we can get spurious wakeup | |||
1505 | * due to signal entered process queue, but delivered to other | |||
1506 | * thread. But sigsuspend should return only on signal | |||
1507 | * delivery. | |||
1508 | */ | |||
1509 | (p->p_sysent->sv_set_syscall_retval)(td, EINTR4); | |||
1510 | for (has_sig = 0; !has_sig;) { | |||
1511 | while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",_sleep((&p->p_sigacts), &(&p->p_mtx)->lock_object , (((80) + 36)|0x100), ("pause"), tick_sbt * (0), 0, 0x0100) | |||
1512 | 0)_sleep((&p->p_sigacts), &(&p->p_mtx)->lock_object , (((80) + 36)|0x100), ("pause"), tick_sbt * (0), 0, 0x0100) == 0) | |||
1513 | /* void */; | |||
1514 | thread_suspend_check(0); | |||
1515 | mtx_lock(&p->p_sigacts->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &p->p_sigacts->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&p->p_sigacts->ps_mtx )))))->mtx_lock, 0x00000004, (_tid)))) __mtx_lock_sleep(& (((((&p->p_sigacts->ps_mtx)))))->mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire->id , (uintptr_t) (((&p->p_sigacts->ps_mtx))), (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0 ); } while (0); } while (0); | |||
1516 | while ((sig = cursig(td)) != 0) { | |||
1517 | KASSERT(sig >= 0, ("sig %d", sig))do { } while (0); | |||
1518 | has_sig += postsig(sig); | |||
1519 | } | |||
1520 | mtx_unlock(&p->p_sigacts->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& p->p_sigacts->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release ->id, (uintptr_t) (((&p->p_sigacts->ps_mtx))), ( uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&p->p_sigacts->ps_mtx ))))->mtx_lock != _tid || !atomic_cmpset_long(&(((((& p->p_sigacts->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&p->p_sigacts->ps_mtx )))))->mtx_lock, (((0))), ((((void *)0))), ((0))); } while (0); | |||
1521 | } | |||
1522 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1523 | td->td_errno = EINTR4; | |||
1524 | td->td_pflags |= TDP_NERRNO0x08000000; | |||
1525 | return (EJUSTRETURN(-2)); | |||
1526 | } | |||
1527 | ||||
1528 | #ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */ | |||
1529 | /* | |||
1530 | * Compatibility sigsuspend call for old binaries. Note nonstandard calling | |||
1531 | * convention: libc stub passes mask, not pointer, to save a copyin. | |||
1532 | */ | |||
1533 | #ifndef _SYS_SYSPROTO_H_ | |||
1534 | struct osigsuspend_args { | |||
1535 | osigset_t mask; | |||
1536 | }; | |||
1537 | #endif | |||
1538 | /* ARGSUSED */ | |||
1539 | int | |||
1540 | osigsuspend(td, uap) | |||
1541 | struct thread *td; | |||
1542 | struct osigsuspend_args *uap; | |||
1543 | { | |||
1544 | sigset_t mask; | |||
1545 | ||||
1546 | OSIG2SIG(uap->mask, mask)do { int __i; for (__i = 0; __i < 4; __i++) (mask).__bits[ __i] = 0; } while (0); (mask).__bits[0] = uap->mask; | |||
1547 | return (kern_sigsuspend(td, mask)); | |||
1548 | } | |||
1549 | #endif /* COMPAT_43 */ | |||
1550 | ||||
1551 | #if defined(COMPAT_43) | |||
1552 | #ifndef _SYS_SYSPROTO_H_ | |||
1553 | struct osigstack_args { | |||
1554 | struct sigstack *nss; | |||
1555 | struct sigstack *oss; | |||
1556 | }; | |||
1557 | #endif | |||
1558 | /* ARGSUSED */ | |||
1559 | int | |||
1560 | osigstack(td, uap) | |||
1561 | struct thread *td; | |||
1562 | register struct osigstack_args *uap; | |||
1563 | { | |||
1564 | struct sigstack nss, oss; | |||
1565 | int error = 0; | |||
1566 | ||||
1567 | if (uap->nss != NULL((void *)0)) { | |||
1568 | error = copyin(uap->nss, &nss, sizeof(nss)); | |||
1569 | if (error) | |||
1570 | return (error); | |||
1571 | } | |||
1572 | oss.ss_sp = td->td_sigstk.ss_sp; | |||
1573 | oss.ss_onstack = sigonstack(cpu_getstack(td)((td)->td_frame->tf_rsp)); | |||
1574 | if (uap->nss != NULL((void *)0)) { | |||
1575 | td->td_sigstk.ss_sp = nss.ss_sp; | |||
1576 | td->td_sigstk.ss_size = 0; | |||
1577 | td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK0x0001; | |||
1578 | td->td_pflags |= TDP_ALTSTACK0x00000020; | |||
1579 | } | |||
1580 | if (uap->oss != NULL((void *)0)) | |||
1581 | error = copyout(&oss, uap->oss, sizeof(oss)); | |||
1582 | ||||
1583 | return (error); | |||
1584 | } | |||
1585 | #endif /* COMPAT_43 */ | |||
1586 | ||||
1587 | #ifndef _SYS_SYSPROTO_H_ | |||
1588 | struct sigaltstack_args { | |||
1589 | stack_t *ss; | |||
1590 | stack_t *oss; | |||
1591 | }; | |||
1592 | #endif | |||
1593 | /* ARGSUSED */ | |||
1594 | int | |||
1595 | sys_sigaltstack(td, uap) | |||
1596 | struct thread *td; | |||
1597 | register struct sigaltstack_args *uap; | |||
1598 | { | |||
1599 | stack_t ss, oss; | |||
1600 | int error; | |||
1601 | ||||
1602 | if (uap->ss != NULL((void *)0)) { | |||
1603 | error = copyin(uap->ss, &ss, sizeof(ss)); | |||
1604 | if (error) | |||
1605 | return (error); | |||
1606 | } | |||
1607 | error = kern_sigaltstack(td, (uap->ss != NULL((void *)0)) ? &ss : NULL((void *)0), | |||
1608 | (uap->oss != NULL((void *)0)) ? &oss : NULL((void *)0)); | |||
1609 | if (error) | |||
1610 | return (error); | |||
1611 | if (uap->oss != NULL((void *)0)) | |||
1612 | error = copyout(&oss, uap->oss, sizeof(stack_t)); | |||
1613 | return (error); | |||
1614 | } | |||
1615 | ||||
1616 | int | |||
1617 | kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss) | |||
1618 | { | |||
1619 | struct proc *p = td->td_proc; | |||
1620 | int oonstack; | |||
1621 | ||||
1622 | oonstack = sigonstack(cpu_getstack(td)((td)->td_frame->tf_rsp)); | |||
1623 | ||||
1624 | if (oss != NULL((void *)0)) { | |||
1625 | *oss = td->td_sigstk; | |||
1626 | oss->ss_flags = (td->td_pflags & TDP_ALTSTACK0x00000020) | |||
1627 | ? ((oonstack) ? SS_ONSTACK0x0001 : 0) : SS_DISABLE0x0004; | |||
1628 | } | |||
1629 | ||||
1630 | if (ss != NULL((void *)0)) { | |||
1631 | if (oonstack) | |||
1632 | return (EPERM1); | |||
1633 | if ((ss->ss_flags & ~SS_DISABLE0x0004) != 0) | |||
1634 | return (EINVAL22); | |||
1635 | if (!(ss->ss_flags & SS_DISABLE0x0004)) { | |||
1636 | if (ss->ss_size < p->p_sysent->sv_minsigstksz) | |||
1637 | return (ENOMEM12); | |||
1638 | ||||
1639 | td->td_sigstk = *ss; | |||
1640 | td->td_pflags |= TDP_ALTSTACK0x00000020; | |||
1641 | } else { | |||
1642 | td->td_pflags &= ~TDP_ALTSTACK0x00000020; | |||
1643 | } | |||
1644 | } | |||
1645 | return (0); | |||
1646 | } | |||
1647 | ||||
1648 | /* | |||
1649 | * Common code for kill process group/broadcast kill. | |||
1650 | * cp is calling process. | |||
1651 | */ | |||
1652 | static int | |||
1653 | killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi) | |||
1654 | { | |||
1655 | struct proc *p; | |||
1656 | struct pgrp *pgrp; | |||
1657 | int err; | |||
1658 | int ret; | |||
1659 | ||||
1660 | ret = ESRCH3; | |||
1661 | if (all) { | |||
1662 | /* | |||
1663 | * broadcast | |||
1664 | */ | |||
1665 | sx_slock(&allproc_lock)(void)__sx_slock(((&allproc_lock)), 0, (((void *)0)), (0) ); | |||
1666 | FOREACH_PROC_IN_SYSTEM(p)for (((p)) = (((&allproc))->lh_first); ((p)); ((p)) = ( (((p)))->p_list.le_next)) { | |||
1667 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
1668 | if (p->p_pid <= 1 || p->p_flag & P_SYSTEM0x00200 || | |||
1669 | p == td->td_proc || p->p_state == PRS_NEW) { | |||
1670 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1671 | continue; | |||
1672 | } | |||
1673 | err = p_cansignal(td, p, sig); | |||
1674 | if (err == 0) { | |||
1675 | if (sig) | |||
1676 | pksignal(p, sig, ksi); | |||
1677 | ret = err; | |||
1678 | } | |||
1679 | else if (ret == ESRCH3) | |||
1680 | ret = err; | |||
1681 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1682 | } | |||
1683 | sx_sunlock(&allproc_lock)__sx_sunlock(((&allproc_lock)), (((void *)0)), (0)); | |||
1684 | } else { | |||
1685 | sx_slock(&proctree_lock)(void)__sx_slock(((&proctree_lock)), 0, (((void *)0)), (0 )); | |||
1686 | if (pgid == 0) { | |||
1687 | /* | |||
1688 | * zero pgid means send to my process group. | |||
1689 | */ | |||
1690 | pgrp = td->td_proc->p_pgrp; | |||
1691 | PGRP_LOCK(pgrp)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(pgrp)->pg_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(pgrp)->pg_mtx)))))->mtx_lock, 0x00000004 , (_tid)))) __mtx_lock_sleep(&(((((&(pgrp)->pg_mtx )))))->mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(pgrp)->pg_mtx))), (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0 ); } while (0); } while (0); | |||
1692 | } else { | |||
1693 | pgrp = pgfind(pgid); | |||
1694 | if (pgrp == NULL((void *)0)) { | |||
1695 | sx_sunlock(&proctree_lock)__sx_sunlock(((&proctree_lock)), (((void *)0)), (0)); | |||
1696 | return (ESRCH3); | |||
1697 | } | |||
1698 | } | |||
1699 | sx_sunlock(&proctree_lock)__sx_sunlock(((&proctree_lock)), (((void *)0)), (0)); | |||
1700 | LIST_FOREACH(p, &pgrp->pg_members, p_pglist)for ((p) = (((&pgrp->pg_members))->lh_first); (p); ( p) = (((p))->p_pglist.le_next)) { | |||
1701 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
1702 | if (p->p_pid <= 1 || p->p_flag & P_SYSTEM0x00200 || | |||
1703 | p->p_state == PRS_NEW) { | |||
1704 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1705 | continue; | |||
1706 | } | |||
1707 | err = p_cansignal(td, p, sig); | |||
1708 | if (err == 0) { | |||
1709 | if (sig) | |||
1710 | pksignal(p, sig, ksi); | |||
1711 | ret = err; | |||
1712 | } | |||
1713 | else if (ret == ESRCH3) | |||
1714 | ret = err; | |||
1715 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1716 | } | |||
1717 | PGRP_UNLOCK(pgrp)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (pgrp)->pg_mtx))))->lock_object.lo_data == 0) do { (void )0; do { if (__builtin_expect((sdt_lockstat___adaptive__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release ->id, (uintptr_t) (((&(pgrp)->pg_mtx))), (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0 ); } while (0); if (((((&(pgrp)->pg_mtx))))->mtx_lock != _tid || !atomic_cmpset_long(&(((((&(pgrp)->pg_mtx )))))->mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep(& (((((&(pgrp)->pg_mtx)))))->mtx_lock, (((0))), ((((void *)0))), ((0))); } while (0); | |||
1718 | } | |||
1719 | return (ret); | |||
1720 | } | |||
1721 | ||||
1722 | #ifndef _SYS_SYSPROTO_H_ | |||
1723 | struct kill_args { | |||
1724 | int pid; | |||
1725 | int signum; | |||
1726 | }; | |||
1727 | #endif | |||
1728 | /* ARGSUSED */ | |||
1729 | int | |||
1730 | sys_kill(struct thread *td, struct kill_args *uap) | |||
1731 | { | |||
1732 | ksiginfo_t ksi; | |||
1733 | struct proc *p; | |||
1734 | int error; | |||
1735 | ||||
1736 | /* | |||
1737 | * A process in capability mode can send signals only to himself. | |||
1738 | * The main rationale behind this is that abort(3) is implemented as | |||
1739 | * kill(getpid(), SIGABRT). | |||
1740 | */ | |||
1741 | if (IN_CAPABILITY_MODE(td)(((td)->td_ucred->cr_flags & 0x00000001) != 0) && uap->pid != td->td_proc->p_pid) | |||
1742 | return (ECAPMODE94); | |||
1743 | ||||
1744 | AUDIT_ARG_SIGNUM(uap->signum)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_signum ((uap->signum)); } while (0); | |||
1745 | AUDIT_ARG_PID(uap->pid)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_pid ((uap->pid)); } while (0); | |||
1746 | if ((u_int)uap->signum > _SIG_MAXSIG128) | |||
1747 | return (EINVAL22); | |||
1748 | ||||
1749 | ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0); | |||
1750 | ksi.ksi_signoksi_info.si_signo = uap->signum; | |||
1751 | ksi.ksi_codeksi_info.si_code = SI_USER0x10001; | |||
1752 | ksi.ksi_pidksi_info.si_pid = td->td_proc->p_pid; | |||
1753 | ksi.ksi_uidksi_info.si_uid = td->td_ucred->cr_ruid; | |||
1754 | ||||
1755 | if (uap->pid > 0) { | |||
1756 | /* kill single process */ | |||
1757 | if ((p = pfind(uap->pid)) == NULL((void *)0)) { | |||
1758 | if ((p = zpfind(uap->pid)) == NULL((void *)0)) | |||
1759 | return (ESRCH3); | |||
1760 | } | |||
1761 | AUDIT_ARG_PROCESS(p)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_process ((p)); } while (0); | |||
1762 | error = p_cansignal(td, p, uap->signum); | |||
1763 | if (error == 0 && uap->signum) | |||
1764 | pksignal(p, uap->signum, &ksi); | |||
1765 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1766 | return (error); | |||
1767 | } | |||
1768 | switch (uap->pid) { | |||
1769 | case -1: /* broadcast signal */ | |||
1770 | return (killpg1(td, uap->signum, 0, 1, &ksi)); | |||
1771 | case 0: /* signal own process group */ | |||
1772 | return (killpg1(td, uap->signum, 0, 0, &ksi)); | |||
1773 | default: /* negative explicit process group */ | |||
1774 | return (killpg1(td, uap->signum, -uap->pid, 0, &ksi)); | |||
1775 | } | |||
1776 | /* NOTREACHED */ | |||
1777 | } | |||
1778 | ||||
1779 | int | |||
1780 | sys_pdkill(td, uap) | |||
1781 | struct thread *td; | |||
1782 | struct pdkill_args *uap; | |||
1783 | { | |||
1784 | struct proc *p; | |||
1785 | cap_rights_t rights; | |||
1786 | int error; | |||
1787 | ||||
1788 | AUDIT_ARG_SIGNUM(uap->signum)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_signum ((uap->signum)); } while (0); | |||
1789 | AUDIT_ARG_FD(uap->fd)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_fd ((uap->fd)); } while (0); | |||
1790 | if ((u_int)uap->signum > _SIG_MAXSIG128) | |||
1791 | return (EINVAL22); | |||
1792 | ||||
1793 | error = procdesc_find(td, uap->fd, | |||
1794 | cap_rights_init(&rights, CAP_PDKILL)__cap_rights_init(0, &rights, ((1ULL << (57 + (1))) | (0x0000000000000800ULL)), 0ULL), &p); | |||
1795 | if (error) | |||
1796 | return (error); | |||
1797 | AUDIT_ARG_PROCESS(p)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_process ((p)); } while (0); | |||
1798 | error = p_cansignal(td, p, uap->signum); | |||
1799 | if (error == 0 && uap->signum) | |||
1800 | kern_psignal(p, uap->signum); | |||
1801 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1802 | return (error); | |||
1803 | } | |||
1804 | ||||
1805 | #if defined(COMPAT_43) | |||
1806 | #ifndef _SYS_SYSPROTO_H_ | |||
1807 | struct okillpg_args { | |||
1808 | int pgid; | |||
1809 | int signum; | |||
1810 | }; | |||
1811 | #endif | |||
1812 | /* ARGSUSED */ | |||
1813 | int | |||
1814 | okillpg(struct thread *td, struct okillpg_args *uap) | |||
1815 | { | |||
1816 | ksiginfo_t ksi; | |||
1817 | ||||
1818 | AUDIT_ARG_SIGNUM(uap->signum)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_signum ((uap->signum)); } while (0); | |||
1819 | AUDIT_ARG_PID(uap->pgid)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_pid ((uap->pgid)); } while (0); | |||
1820 | if ((u_int)uap->signum > _SIG_MAXSIG128) | |||
1821 | return (EINVAL22); | |||
1822 | ||||
1823 | ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0); | |||
1824 | ksi.ksi_signoksi_info.si_signo = uap->signum; | |||
1825 | ksi.ksi_codeksi_info.si_code = SI_USER0x10001; | |||
1826 | ksi.ksi_pidksi_info.si_pid = td->td_proc->p_pid; | |||
1827 | ksi.ksi_uidksi_info.si_uid = td->td_ucred->cr_ruid; | |||
1828 | return (killpg1(td, uap->signum, uap->pgid, 0, &ksi)); | |||
1829 | } | |||
1830 | #endif /* COMPAT_43 */ | |||
1831 | ||||
1832 | #ifndef _SYS_SYSPROTO_H_ | |||
1833 | struct sigqueue_args { | |||
1834 | pid_t pid; | |||
1835 | int signum; | |||
1836 | /* union sigval */ void *value; | |||
1837 | }; | |||
1838 | #endif | |||
1839 | int | |||
1840 | sys_sigqueue(struct thread *td, struct sigqueue_args *uap) | |||
1841 | { | |||
1842 | ksiginfo_t ksi; | |||
1843 | struct proc *p; | |||
1844 | int error; | |||
1845 | ||||
1846 | if ((u_int)uap->signum > _SIG_MAXSIG128) | |||
1847 | return (EINVAL22); | |||
1848 | ||||
1849 | /* | |||
1850 | * Specification says sigqueue can only send signal to | |||
1851 | * single process. | |||
1852 | */ | |||
1853 | if (uap->pid <= 0) | |||
1854 | return (EINVAL22); | |||
1855 | ||||
1856 | if ((p = pfind(uap->pid)) == NULL((void *)0)) { | |||
1857 | if ((p = zpfind(uap->pid)) == NULL((void *)0)) | |||
1858 | return (ESRCH3); | |||
1859 | } | |||
1860 | error = p_cansignal(td, p, uap->signum); | |||
1861 | if (error == 0 && uap->signum != 0) { | |||
1862 | ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0); | |||
1863 | ksi.ksi_flags = KSI_SIGQ0x08; | |||
1864 | ksi.ksi_signoksi_info.si_signo = uap->signum; | |||
1865 | ksi.ksi_codeksi_info.si_code = SI_QUEUE0x10002; | |||
1866 | ksi.ksi_pidksi_info.si_pid = td->td_proc->p_pid; | |||
1867 | ksi.ksi_uidksi_info.si_uid = td->td_ucred->cr_ruid; | |||
1868 | ksi.ksi_valueksi_info.si_value.sival_ptr = uap->value; | |||
1869 | error = pksignal(p, ksi.ksi_signoksi_info.si_signo, &ksi); | |||
1870 | } | |||
1871 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1872 | return (error); | |||
1873 | } | |||
1874 | ||||
1875 | /* | |||
1876 | * Send a signal to a process group. | |||
1877 | */ | |||
1878 | void | |||
1879 | gsignal(int pgid, int sig, ksiginfo_t *ksi) | |||
1880 | { | |||
1881 | struct pgrp *pgrp; | |||
1882 | ||||
1883 | if (pgid != 0) { | |||
1884 | sx_slock(&proctree_lock)(void)__sx_slock(((&proctree_lock)), 0, (((void *)0)), (0 )); | |||
1885 | pgrp = pgfind(pgid); | |||
1886 | sx_sunlock(&proctree_lock)__sx_sunlock(((&proctree_lock)), (((void *)0)), (0)); | |||
1887 | if (pgrp != NULL((void *)0)) { | |||
1888 | pgsignal(pgrp, sig, 0, ksi); | |||
1889 | PGRP_UNLOCK(pgrp)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (pgrp)->pg_mtx))))->lock_object.lo_data == 0) do { (void )0; do { if (__builtin_expect((sdt_lockstat___adaptive__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release ->id, (uintptr_t) (((&(pgrp)->pg_mtx))), (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0 ); } while (0); if (((((&(pgrp)->pg_mtx))))->mtx_lock != _tid || !atomic_cmpset_long(&(((((&(pgrp)->pg_mtx )))))->mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep(& (((((&(pgrp)->pg_mtx)))))->mtx_lock, (((0))), ((((void *)0))), ((0))); } while (0); | |||
1890 | } | |||
1891 | } | |||
1892 | } | |||
1893 | ||||
1894 | /* | |||
1895 | * Send a signal to a process group. If checktty is 1, | |||
1896 | * limit to members which have a controlling terminal. | |||
1897 | */ | |||
1898 | void | |||
1899 | pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi) | |||
1900 | { | |||
1901 | struct proc *p; | |||
1902 | ||||
1903 | if (pgrp) { | |||
1904 | PGRP_LOCK_ASSERT(pgrp, MA_OWNED)(void)0; | |||
1905 | LIST_FOREACH(p, &pgrp->pg_members, p_pglist)for ((p) = (((&pgrp->pg_members))->lh_first); (p); ( p) = (((p))->p_pglist.le_next)) { | |||
1906 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
1907 | if (p->p_state == PRS_NORMAL && | |||
1908 | (checkctty == 0 || p->p_flag & P_CONTROLT0x00002)) | |||
1909 | pksignal(p, sig, ksi); | |||
1910 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1911 | } | |||
1912 | } | |||
1913 | } | |||
1914 | ||||
1915 | ||||
1916 | /* | |||
1917 | * Recalculate the signal mask and reset the signal disposition after | |||
1918 | * usermode frame for delivery is formed. Should be called after | |||
1919 | * mach-specific routine, because sysent->sv_sendsig() needs correct | |||
1920 | * ps_siginfo and signal mask. | |||
1921 | */ | |||
1922 | static void | |||
1923 | postsig_done(int sig, struct thread *td, struct sigacts *ps) | |||
1924 | { | |||
1925 | sigset_t mask; | |||
1926 | ||||
1927 | mtx_assert(&ps->ps_mtx, MA_OWNED)(void)0; | |||
1928 | td->td_ru.ru_nsignals++; | |||
1929 | mask = ps->ps_catchmask[_SIG_IDX(sig)((sig) - 1)]; | |||
1930 | if (!SIGISMEMBER(ps->ps_signodefer, sig)((ps->ps_signodefer).__bits[(((sig) - 1) >> 5)] & (1 << (((sig) - 1) & 31)))) | |||
1931 | SIGADDSET(mask, sig)((mask).__bits[(((sig) - 1) >> 5)] |= (1 << (((sig ) - 1) & 31))); | |||
1932 | kern_sigprocmask(td, SIG_BLOCK1, &mask, NULL((void *)0), | |||
1933 | SIGPROCMASK_PROC_LOCKED0x0002 | SIGPROCMASK_PS_LOCKED0x0004); | |||
1934 | if (SIGISMEMBER(ps->ps_sigreset, sig)((ps->ps_sigreset).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31)))) | |||
1935 | sigdflt(ps, sig); | |||
1936 | } | |||
1937 | ||||
1938 | ||||
1939 | /* | |||
1940 | * Send a signal caused by a trap to the current thread. If it will be | |||
1941 | * caught immediately, deliver it with correct code. Otherwise, post it | |||
1942 | * normally. | |||
1943 | */ | |||
1944 | void | |||
1945 | trapsignal(struct thread *td, ksiginfo_t *ksi) | |||
1946 | { | |||
1947 | struct sigacts *ps; | |||
1948 | struct proc *p; | |||
1949 | int sig; | |||
1950 | int code; | |||
1951 | ||||
1952 | p = td->td_proc; | |||
1953 | sig = ksi->ksi_signoksi_info.si_signo; | |||
1954 | code = ksi->ksi_codeksi_info.si_code; | |||
1955 | KASSERT(_SIG_VALID(sig), ("invalid signal"))do { } while (0); | |||
1956 | ||||
1957 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
1958 | ps = p->p_sigacts; | |||
1959 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
1960 | if ((p->p_flag & P_TRACED0x00800) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31))) && | |||
1961 | !SIGISMEMBER(td->td_sigmask, sig)((td->td_sigmask).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31)))) { | |||
1962 | #ifdef KTRACE1 | |||
1963 | if (KTRPOINT(curthread, KTR_PSIG)(((((__curthread())))->td_proc->p_traceflag & (1 << (5))) && !(((__curthread()))->td_pflags & 0x00000004 ))) | |||
1964 | ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)], | |||
1965 | &td->td_sigmask, code); | |||
1966 | #endif | |||
1967 | (*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)], | |||
1968 | ksi, &td->td_sigmask); | |||
1969 | postsig_done(sig, td, ps); | |||
1970 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1971 | } else { | |||
1972 | /* | |||
1973 | * Avoid a possible infinite loop if the thread | |||
1974 | * masking the signal or process is ignoring the | |||
1975 | * signal. | |||
1976 | */ | |||
1977 | if (kern_forcesigexit && | |||
1978 | (SIGISMEMBER(td->td_sigmask, sig)((td->td_sigmask).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31))) || | |||
1979 | ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_IGN((__sighandler_t *)1))) { | |||
1980 | SIGDELSET(td->td_sigmask, sig)((td->td_sigmask).__bits[(((sig) - 1) >> 5)] &= ~ (1 << (((sig) - 1) & 31))); | |||
1981 | SIGDELSET(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] &= ~(1 << (((sig) - 1) & 31))); | |||
1982 | SIGDELSET(ps->ps_sigignore, sig)((ps->ps_sigignore).__bits[(((sig) - 1) >> 5)] &= ~(1 << (((sig) - 1) & 31))); | |||
1983 | ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] = SIG_DFL((__sighandler_t *)0); | |||
1984 | } | |||
1985 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1986 | p->p_code = code; /* XXX for core dump/debugger */ | |||
1987 | p->p_sig = sig; /* XXX to verify code */ | |||
1988 | tdsendsignal(p, td, sig, ksi); | |||
1989 | } | |||
1990 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
1991 | } | |||
1992 | ||||
1993 | static struct thread * | |||
1994 | sigtd(struct proc *p, int sig, int prop) | |||
1995 | { | |||
1996 | struct thread *td, *signal_td; | |||
1997 | ||||
1998 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
1999 | ||||
2000 | /* | |||
2001 | * Check if current thread can handle the signal without | |||
2002 | * switching context to another thread. | |||
2003 | */ | |||
2004 | if (curproc((__curthread())->td_proc) == p && !SIGISMEMBER(curthread->td_sigmask, sig)(((__curthread())->td_sigmask).__bits[(((sig) - 1) >> 5)] & (1 << (((sig) - 1) & 31)))) | |||
2005 | return (curthread(__curthread())); | |||
2006 | signal_td = NULL((void *)0); | |||
2007 | FOREACH_THREAD_IN_PROC(p, td)for (((td)) = (((&(p)->p_threads))->tqh_first); ((td )); ((td)) = ((((td)))->td_plist.tqe_next)) { | |||
2008 | if (!SIGISMEMBER(td->td_sigmask, sig)((td->td_sigmask).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31)))) { | |||
2009 | signal_td = td; | |||
2010 | break; | |||
2011 | } | |||
2012 | } | |||
2013 | if (signal_td == NULL((void *)0)) | |||
2014 | signal_td = FIRST_THREAD_IN_PROC(p)((&(p)->p_threads)->tqh_first); | |||
2015 | return (signal_td); | |||
2016 | } | |||
2017 | ||||
2018 | /* | |||
2019 | * Send the signal to the process. If the signal has an action, the action | |||
2020 | * is usually performed by the target process rather than the caller; we add | |||
2021 | * the signal to the set of pending signals for the process. | |||
2022 | * | |||
2023 | * Exceptions: | |||
2024 | * o When a stop signal is sent to a sleeping process that takes the | |||
2025 | * default action, the process is stopped without awakening it. | |||
2026 | * o SIGCONT restarts stopped processes (or puts them back to sleep) | |||
2027 | * regardless of the signal action (eg, blocked or ignored). | |||
2028 | * | |||
2029 | * Other ignored signals are discarded immediately. | |||
2030 | * | |||
2031 | * NB: This function may be entered from the debugger via the "kill" DDB | |||
2032 | * command. There is little that can be done to mitigate the possibly messy | |||
2033 | * side effects of this unwise possibility. | |||
2034 | */ | |||
2035 | void | |||
2036 | kern_psignal(struct proc *p, int sig) | |||
2037 | { | |||
2038 | ksiginfo_t ksi; | |||
2039 | ||||
2040 | ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0); | |||
2041 | ksi.ksi_signoksi_info.si_signo = sig; | |||
2042 | ksi.ksi_codeksi_info.si_code = SI_KERNEL0x10006; | |||
2043 | (void) tdsendsignal(p, NULL((void *)0), sig, &ksi); | |||
2044 | } | |||
2045 | ||||
2046 | int | |||
2047 | pksignal(struct proc *p, int sig, ksiginfo_t *ksi) | |||
2048 | { | |||
2049 | ||||
2050 | return (tdsendsignal(p, NULL((void *)0), sig, ksi)); | |||
2051 | } | |||
2052 | ||||
2053 | /* Utility function for finding a thread to send signal event to. */ | |||
2054 | int | |||
2055 | sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd) | |||
2056 | { | |||
2057 | struct thread *td; | |||
2058 | ||||
2059 | if (sigev->sigev_notify == SIGEV_THREAD_ID4) { | |||
2060 | td = tdfind(sigev->sigev_notify_thread_id_sigev_un._threadid, p->p_pid); | |||
2061 | if (td == NULL((void *)0)) | |||
2062 | return (ESRCH3); | |||
2063 | *ttd = td; | |||
2064 | } else { | |||
2065 | *ttd = NULL((void *)0); | |||
2066 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2067 | } | |||
2068 | return (0); | |||
2069 | } | |||
2070 | ||||
2071 | void | |||
2072 | tdsignal(struct thread *td, int sig) | |||
2073 | { | |||
2074 | ksiginfo_t ksi; | |||
2075 | ||||
2076 | ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0); | |||
2077 | ksi.ksi_signoksi_info.si_signo = sig; | |||
2078 | ksi.ksi_codeksi_info.si_code = SI_KERNEL0x10006; | |||
2079 | (void) tdsendsignal(td->td_proc, td, sig, &ksi); | |||
2080 | } | |||
2081 | ||||
2082 | void | |||
2083 | tdksignal(struct thread *td, int sig, ksiginfo_t *ksi) | |||
2084 | { | |||
2085 | ||||
2086 | (void) tdsendsignal(td->td_proc, td, sig, ksi); | |||
2087 | } | |||
2088 | ||||
2089 | int | |||
2090 | tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi) | |||
2091 | { | |||
2092 | sig_t action; | |||
2093 | sigqueue_t *sigqueue; | |||
2094 | int prop; | |||
2095 | struct sigacts *ps; | |||
2096 | int intrval; | |||
2097 | int ret = 0; | |||
2098 | int wakeup_swapper; | |||
2099 | ||||
2100 | MPASS(td == NULL || p == td->td_proc)do { } while (0); | |||
2101 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
2102 | ||||
2103 | if (!_SIG_VALID(sig)((sig) <= 128 && (sig) > 0)) | |||
2104 | panic("%s(): invalid signal %d", __func__, sig); | |||
2105 | ||||
2106 | KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__))do { } while (0); | |||
2107 | ||||
2108 | /* | |||
2109 | * IEEE Std 1003.1-2001: return success when killing a zombie. | |||
2110 | */ | |||
2111 | if (p->p_state == PRS_ZOMBIE) { | |||
2112 | if (ksi && (ksi->ksi_flags & KSI_INS0x04)) | |||
2113 | ksiginfo_tryfree(ksi); | |||
2114 | return (ret); | |||
2115 | } | |||
2116 | ||||
2117 | ps = p->p_sigacts; | |||
2118 | KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig)knote(p->p_klist, 0x08000000 | sig, 0x0001); | |||
2119 | prop = sigprop(sig); | |||
2120 | ||||
2121 | if (td == NULL((void *)0)) { | |||
2122 | td = sigtd(p, sig, prop); | |||
2123 | sigqueue = &p->p_sigqueue; | |||
2124 | } else | |||
2125 | sigqueue = &td->td_sigqueue; | |||
2126 | ||||
2127 | SDT_PROBE3(proc, , , signal__send, td, p, sig)do { if (__builtin_expect((sdt_proc___signal__send->id), 0 )) (*sdt_probe_func)(sdt_proc___signal__send->id, (uintptr_t ) td, (uintptr_t) p, (uintptr_t) sig, (uintptr_t) 0, (uintptr_t ) 0); } while (0); | |||
2128 | ||||
2129 | /* | |||
2130 | * If the signal is being ignored, | |||
2131 | * then we forget about it immediately. | |||
2132 | * (Note: we don't set SIGCONT in ps_sigignore, | |||
2133 | * and if it is set to SIG_IGN, | |||
2134 | * action will be SIG_DFL here.) | |||
2135 | */ | |||
2136 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2137 | if (SIGISMEMBER(ps->ps_sigignore, sig)((ps->ps_sigignore).__bits[(((sig) - 1) >> 5)] & (1 << (((sig) - 1) & 31)))) { | |||
2138 | SDT_PROBE3(proc, , , signal__discard, td, p, sig)do { if (__builtin_expect((sdt_proc___signal__discard->id) , 0)) (*sdt_probe_func)(sdt_proc___signal__discard->id, (uintptr_t ) td, (uintptr_t) p, (uintptr_t) sig, (uintptr_t) 0, (uintptr_t ) 0); } while (0); | |||
2139 | ||||
2140 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
2141 | if (ksi && (ksi->ksi_flags & KSI_INS0x04)) | |||
2142 | ksiginfo_tryfree(ksi); | |||
2143 | return (ret); | |||
2144 | } | |||
2145 | if (SIGISMEMBER(td->td_sigmask, sig)((td->td_sigmask).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31)))) | |||
2146 | action = SIG_HOLD((__sighandler_t *)3); | |||
2147 | else if (SIGISMEMBER(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31)))) | |||
2148 | action = SIG_CATCH((__sighandler_t *)2); | |||
2149 | else | |||
2150 | action = SIG_DFL((__sighandler_t *)0); | |||
2151 | if (SIGISMEMBER(ps->ps_sigintr, sig)((ps->ps_sigintr).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31)))) | |||
2152 | intrval = EINTR4; | |||
2153 | else | |||
2154 | intrval = ERESTART(-1); | |||
2155 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
2156 | ||||
2157 | if (prop & SA_CONT0x20) | |||
2158 | sigqueue_delete_stopmask_proc(p); | |||
2159 | else if (prop & SA_STOP0x04) { | |||
2160 | /* | |||
2161 | * If sending a tty stop signal to a member of an orphaned | |||
2162 | * process group, discard the signal here if the action | |||
2163 | * is default; don't stop the process below if sleeping, | |||
2164 | * and don't clear any pending SIGCONT. | |||
2165 | */ | |||
2166 | if ((prop & SA_TTYSTOP0x08) && | |||
2167 | (p->p_pgrp->pg_jobc == 0) && | |||
2168 | (action == SIG_DFL((__sighandler_t *)0))) { | |||
2169 | if (ksi && (ksi->ksi_flags & KSI_INS0x04)) | |||
2170 | ksiginfo_tryfree(ksi); | |||
2171 | return (ret); | |||
2172 | } | |||
2173 | sigqueue_delete_proc(p, SIGCONT19); | |||
2174 | if (p->p_flag & P_CONTINUED0x10000) { | |||
2175 | p->p_flag &= ~P_CONTINUED0x10000; | |||
2176 | PROC_LOCK(p->p_pptr)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p->p_pptr)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(p->p_pptr)->p_mtx) ))))->mtx_lock, 0x00000004, (_tid)))) __mtx_lock_sleep(& (((((&(p->p_pptr)->p_mtx)))))->mtx_lock, _tid, ( ((0))), ((((void *)0))), ((0))); else do { (void)0; do { if ( __builtin_expect((sdt_lockstat___adaptive__acquire->id), 0 )) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire->id, (uintptr_t) (((&(p->p_pptr)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0) ; } while (0); } while (0); | |||
2177 | sigqueue_take(p->p_ksi); | |||
2178 | PROC_UNLOCK(p->p_pptr)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p->p_pptr)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release ->id, (uintptr_t) (((&(p->p_pptr)->p_mtx))), (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0 ); } while (0); if (((((&(p->p_pptr)->p_mtx))))-> mtx_lock != _tid || !atomic_cmpset_long(&(((((&(p-> p_pptr)->p_mtx)))))->mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep (&(((((&(p->p_pptr)->p_mtx)))))->mtx_lock, ( ((0))), ((((void *)0))), ((0))); } while (0); | |||
2179 | } | |||
2180 | } | |||
2181 | ||||
2182 | ret = sigqueue_add(sigqueue, sig, ksi); | |||
2183 | if (ret != 0) | |||
2184 | return (ret); | |||
2185 | signotify(td); | |||
2186 | /* | |||
2187 | * Defer further processing for signals which are held, | |||
2188 | * except that stopped processes must be continued by SIGCONT. | |||
2189 | */ | |||
2190 | if (action == SIG_HOLD((__sighandler_t *)3) && | |||
2191 | !((prop & SA_CONT0x20) && (p->p_flag & P_STOPPED_SIG0x20000))) | |||
2192 | return (ret); | |||
2193 | /* | |||
2194 | * SIGKILL: Remove procfs STOPEVENTs. | |||
2195 | */ | |||
2196 | if (sig == SIGKILL9) { | |||
2197 | /* from procfs_ioctl.c: PIOCBIC */ | |||
2198 | p->p_stops = 0; | |||
2199 | /* from procfs_ioctl.c: PIOCCONT */ | |||
2200 | p->p_step = 0; | |||
2201 | wakeup(&p->p_step); | |||
2202 | } | |||
2203 | /* | |||
2204 | * Some signals have a process-wide effect and a per-thread | |||
2205 | * component. Most processing occurs when the process next | |||
2206 | * tries to cross the user boundary, however there are some | |||
2207 | * times when processing needs to be done immediately, such as | |||
2208 | * waking up threads so that they can cross the user boundary. | |||
2209 | * We try to do the per-process part here. | |||
2210 | */ | |||
2211 | if (P_SHOULDSTOP(p)((p)->p_flag & (0x20000|0x80000|0x40000))) { | |||
2212 | KASSERT(!(p->p_flag & P_WEXIT),do { } while (0) | |||
2213 | ("signal to stopped but exiting process"))do { } while (0); | |||
2214 | if (sig == SIGKILL9) { | |||
2215 | /* | |||
2216 | * If traced process is already stopped, | |||
2217 | * then no further action is necessary. | |||
2218 | */ | |||
2219 | if (p->p_flag & P_TRACED0x00800) | |||
2220 | goto out; | |||
2221 | /* | |||
2222 | * SIGKILL sets process running. | |||
2223 | * It will die elsewhere. | |||
2224 | * All threads must be restarted. | |||
2225 | */ | |||
2226 | p->p_flag &= ~P_STOPPED_SIG0x20000; | |||
2227 | goto runfast; | |||
2228 | } | |||
2229 | ||||
2230 | if (prop & SA_CONT0x20) { | |||
2231 | /* | |||
2232 | * If traced process is already stopped, | |||
2233 | * then no further action is necessary. | |||
2234 | */ | |||
2235 | if (p->p_flag & P_TRACED0x00800) | |||
2236 | goto out; | |||
2237 | /* | |||
2238 | * If SIGCONT is default (or ignored), we continue the | |||
2239 | * process but don't leave the signal in sigqueue as | |||
2240 | * it has no further action. If SIGCONT is held, we | |||
2241 | * continue the process and leave the signal in | |||
2242 | * sigqueue. If the process catches SIGCONT, let it | |||
2243 | * handle the signal itself. If it isn't waiting on | |||
2244 | * an event, it goes back to run state. | |||
2245 | * Otherwise, process goes back to sleep state. | |||
2246 | */ | |||
2247 | p->p_flag &= ~P_STOPPED_SIG0x20000; | |||
2248 | PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter (); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock ))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object .lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)-> p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), (( 0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2249 | if (p->p_numthreads == p->p_suspcount) { | |||
2250 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2251 | p->p_flag |= P_CONTINUED0x10000; | |||
2252 | p->p_xsig = SIGCONT19; | |||
2253 | PROC_LOCK(p->p_pptr)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p->p_pptr)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(p->p_pptr)->p_mtx) ))))->mtx_lock, 0x00000004, (_tid)))) __mtx_lock_sleep(& (((((&(p->p_pptr)->p_mtx)))))->mtx_lock, _tid, ( ((0))), ((((void *)0))), ((0))); else do { (void)0; do { if ( __builtin_expect((sdt_lockstat___adaptive__acquire->id), 0 )) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire->id, (uintptr_t) (((&(p->p_pptr)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0) ; } while (0); } while (0); | |||
2254 | childproc_continued(p); | |||
2255 | PROC_UNLOCK(p->p_pptr)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p->p_pptr)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release ->id, (uintptr_t) (((&(p->p_pptr)->p_mtx))), (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0 ); } while (0); if (((((&(p->p_pptr)->p_mtx))))-> mtx_lock != _tid || !atomic_cmpset_long(&(((((&(p-> p_pptr)->p_mtx)))))->mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep (&(((((&(p->p_pptr)->p_mtx)))))->mtx_lock, ( ((0))), ((((void *)0))), ((0))); } while (0); | |||
2256 | PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter (); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock ))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object .lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)-> p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), (( 0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2257 | } | |||
2258 | if (action == SIG_DFL((__sighandler_t *)0)) { | |||
2259 | thread_unsuspend(p); | |||
2260 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2261 | sigqueue_delete(sigqueue, sig); | |||
2262 | goto out; | |||
2263 | } | |||
2264 | if (action == SIG_CATCH((__sighandler_t *)2)) { | |||
2265 | /* | |||
2266 | * The process wants to catch it so it needs | |||
2267 | * to run at least one thread, but which one? | |||
2268 | */ | |||
2269 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2270 | goto runfast; | |||
2271 | } | |||
2272 | /* | |||
2273 | * The signal is not ignored or caught. | |||
2274 | */ | |||
2275 | thread_unsuspend(p); | |||
2276 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2277 | goto out; | |||
2278 | } | |||
2279 | ||||
2280 | if (prop & SA_STOP0x04) { | |||
2281 | /* | |||
2282 | * If traced process is already stopped, | |||
2283 | * then no further action is necessary. | |||
2284 | */ | |||
2285 | if (p->p_flag & P_TRACED0x00800) | |||
2286 | goto out; | |||
2287 | /* | |||
2288 | * Already stopped, don't need to stop again | |||
2289 | * (If we did the shell could get confused). | |||
2290 | * Just make sure the signal STOP bit set. | |||
2291 | */ | |||
2292 | p->p_flag |= P_STOPPED_SIG0x20000; | |||
2293 | sigqueue_delete(sigqueue, sig); | |||
2294 | goto out; | |||
2295 | } | |||
2296 | ||||
2297 | /* | |||
2298 | * All other kinds of signals: | |||
2299 | * If a thread is sleeping interruptibly, simulate a | |||
2300 | * wakeup so that when it is continued it will be made | |||
2301 | * runnable and can look at the signal. However, don't make | |||
2302 | * the PROCESS runnable, leave it stopped. | |||
2303 | * It may run a bit until it hits a thread_suspend_check(). | |||
2304 | */ | |||
2305 | wakeup_swapper = 0; | |||
2306 | PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter (); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock ))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object .lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)-> p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), (( 0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2307 | thread_lock(td)thread_lock_flags_((td), 0, "/usr/src/sys/kern/kern_sig.c", 2307 ); | |||
2308 | if (TD_ON_SLEEPQ(td)((td)->td_wchan != ((void *)0)) && (td->td_flags & TDF_SINTR0x00000008)) | |||
2309 | wakeup_swapper = sleepq_abort(td, intrval); | |||
2310 | thread_unlock(td)do { if ((((((((td)->td_lock)))))->lock_object.lo_data != 0)) (((((td)->td_lock))))->lock_object.lo_data--; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) ((((td)->td_lock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&((((((td)->td_lock)))))->mtx_lock , 0x00000004); } spinlock_exit(); } while (0); | |||
2311 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2312 | if (wakeup_swapper) | |||
2313 | kick_proc0(); | |||
2314 | goto out; | |||
2315 | /* | |||
2316 | * Mutexes are short lived. Threads waiting on them will | |||
2317 | * hit thread_suspend_check() soon. | |||
2318 | */ | |||
2319 | } else if (p->p_state == PRS_NORMAL) { | |||
2320 | if (p->p_flag & P_TRACED0x00800 || action == SIG_CATCH((__sighandler_t *)2)) { | |||
2321 | tdsigwakeup(td, sig, action, intrval); | |||
2322 | goto out; | |||
2323 | } | |||
2324 | ||||
2325 | MPASS(action == SIG_DFL)do { } while (0); | |||
2326 | ||||
2327 | if (prop & SA_STOP0x04) { | |||
2328 | if (p->p_flag & (P_PPWAIT0x00010|P_WEXIT0x02000)) | |||
2329 | goto out; | |||
2330 | p->p_flag |= P_STOPPED_SIG0x20000; | |||
2331 | p->p_xsig = sig; | |||
2332 | PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter (); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock ))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object .lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)-> p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), (( 0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2333 | wakeup_swapper = sig_suspend_threads(td, p, 1); | |||
2334 | if (p->p_numthreads == p->p_suspcount) { | |||
2335 | /* | |||
2336 | * only thread sending signal to another | |||
2337 | * process can reach here, if thread is sending | |||
2338 | * signal to its process, because thread does | |||
2339 | * not suspend itself here, p_numthreads | |||
2340 | * should never be equal to p_suspcount. | |||
2341 | */ | |||
2342 | thread_stopped(p); | |||
2343 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2344 | sigqueue_delete_proc(p, p->p_xsig); | |||
2345 | } else | |||
2346 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2347 | if (wakeup_swapper) | |||
2348 | kick_proc0(); | |||
2349 | goto out; | |||
2350 | } | |||
2351 | } else { | |||
2352 | /* Not in "NORMAL" state. discard the signal. */ | |||
2353 | sigqueue_delete(sigqueue, sig); | |||
2354 | goto out; | |||
2355 | } | |||
2356 | ||||
2357 | /* | |||
2358 | * The process is not stopped so we need to apply the signal to all the | |||
2359 | * running threads. | |||
2360 | */ | |||
2361 | runfast: | |||
2362 | tdsigwakeup(td, sig, action, intrval); | |||
2363 | PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter (); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock ))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object .lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)-> p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), (( 0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2364 | thread_unsuspend(p); | |||
2365 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2366 | out: | |||
2367 | /* If we jump here, proc slock should not be owned. */ | |||
2368 | PROC_SLOCK_ASSERT(p, MA_NOTOWNED)(void)0; | |||
2369 | return (ret); | |||
2370 | } | |||
2371 | ||||
2372 | /* | |||
2373 | * The force of a signal has been directed against a single | |||
2374 | * thread. We need to see what we can do about knocking it | |||
2375 | * out of any sleep it may be in etc. | |||
2376 | */ | |||
2377 | static void | |||
2378 | tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval) | |||
2379 | { | |||
2380 | struct proc *p = td->td_proc; | |||
2381 | register int prop; | |||
2382 | int wakeup_swapper; | |||
2383 | ||||
2384 | wakeup_swapper = 0; | |||
2385 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
2386 | prop = sigprop(sig); | |||
2387 | ||||
2388 | PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter (); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock ))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object .lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)-> p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), (( 0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2389 | thread_lock(td)thread_lock_flags_((td), 0, "/usr/src/sys/kern/kern_sig.c", 2389 ); | |||
2390 | /* | |||
2391 | * Bring the priority of a thread up if we want it to get | |||
2392 | * killed in this lifetime. Be careful to avoid bumping the | |||
2393 | * priority of the idle thread, since we still allow to signal | |||
2394 | * kernel processes. | |||
2395 | */ | |||
2396 | if (action == SIG_DFL((__sighandler_t *)0) && (prop & SA_KILL0x01) != 0 && | |||
2397 | td->td_priority > PUSER((120)) && !TD_IS_IDLETHREAD(td)((td)->td_flags & 0x00000020)) | |||
2398 | sched_prio(td, PUSER((120))); | |||
2399 | if (TD_ON_SLEEPQ(td)((td)->td_wchan != ((void *)0))) { | |||
2400 | /* | |||
2401 | * If thread is sleeping uninterruptibly | |||
2402 | * we can't interrupt the sleep... the signal will | |||
2403 | * be noticed when the process returns through | |||
2404 | * trap() or syscall(). | |||
2405 | */ | |||
2406 | if ((td->td_flags & TDF_SINTR0x00000008) == 0) | |||
2407 | goto out; | |||
2408 | /* | |||
2409 | * If SIGCONT is default (or ignored) and process is | |||
2410 | * asleep, we are finished; the process should not | |||
2411 | * be awakened. | |||
2412 | */ | |||
2413 | if ((prop & SA_CONT0x20) && action == SIG_DFL((__sighandler_t *)0)) { | |||
2414 | thread_unlock(td)do { if ((((((((td)->td_lock)))))->lock_object.lo_data != 0)) (((((td)->td_lock))))->lock_object.lo_data--; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) ((((td)->td_lock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&((((((td)->td_lock)))))->mtx_lock , 0x00000004); } spinlock_exit(); } while (0); | |||
2415 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2416 | sigqueue_delete(&p->p_sigqueue, sig); | |||
2417 | /* | |||
2418 | * It may be on either list in this state. | |||
2419 | * Remove from both for now. | |||
2420 | */ | |||
2421 | sigqueue_delete(&td->td_sigqueue, sig); | |||
2422 | return; | |||
2423 | } | |||
2424 | ||||
2425 | /* | |||
2426 | * Don't awaken a sleeping thread for SIGSTOP if the | |||
2427 | * STOP signal is deferred. | |||
2428 | */ | |||
2429 | if ((prop & SA_STOP0x04) != 0 && (td->td_flags & (TDF_SBDRY0x00002000 | | |||
2430 | TDF_SERESTART0x00080000 | TDF_SEINTR0x00200000)) == TDF_SBDRY0x00002000) | |||
2431 | goto out; | |||
2432 | ||||
2433 | /* | |||
2434 | * Give low priority threads a better chance to run. | |||
2435 | */ | |||
2436 | if (td->td_priority > PUSER((120)) && !TD_IS_IDLETHREAD(td)((td)->td_flags & 0x00000020)) | |||
2437 | sched_prio(td, PUSER((120))); | |||
2438 | ||||
2439 | wakeup_swapper = sleepq_abort(td, intrval); | |||
2440 | } else { | |||
2441 | /* | |||
2442 | * Other states do nothing with the signal immediately, | |||
2443 | * other than kicking ourselves if we are running. | |||
2444 | * It will either never be noticed, or noticed very soon. | |||
2445 | */ | |||
2446 | #ifdef SMP1 | |||
2447 | if (TD_IS_RUNNING(td)((td)->td_state == TDS_RUNNING) && td != curthread(__curthread())) | |||
2448 | forward_signal(td); | |||
2449 | #endif | |||
2450 | } | |||
2451 | out: | |||
2452 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2453 | thread_unlock(td)do { if ((((((((td)->td_lock)))))->lock_object.lo_data != 0)) (((((td)->td_lock))))->lock_object.lo_data--; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) ((((td)->td_lock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&((((((td)->td_lock)))))->mtx_lock , 0x00000004); } spinlock_exit(); } while (0); | |||
2454 | if (wakeup_swapper) | |||
2455 | kick_proc0(); | |||
2456 | } | |||
2457 | ||||
2458 | static int | |||
2459 | sig_suspend_threads(struct thread *td, struct proc *p, int sending) | |||
2460 | { | |||
2461 | struct thread *td2; | |||
2462 | int wakeup_swapper; | |||
2463 | ||||
2464 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
2465 | PROC_SLOCK_ASSERT(p, MA_OWNED)(void)0; | |||
2466 | ||||
2467 | wakeup_swapper = 0; | |||
2468 | FOREACH_THREAD_IN_PROC(p, td2)for (((td2)) = (((&(p)->p_threads))->tqh_first); (( td2)); ((td2)) = ((((td2)))->td_plist.tqe_next)) { | |||
2469 | thread_lock(td2)thread_lock_flags_((td2), 0, "/usr/src/sys/kern/kern_sig.c", 2469 ); | |||
2470 | td2->td_flags |= TDF_ASTPENDING0x00000800 | TDF_NEEDSUSPCHK0x00008000; | |||
2471 | if ((TD_IS_SLEEPING(td2)((td2)->td_inhibitors & 0x0002) || TD_IS_SWAPPED(td2)((td2)->td_inhibitors & 0x0004)) && | |||
2472 | (td2->td_flags & TDF_SINTR0x00000008)) { | |||
2473 | if (td2->td_flags & TDF_SBDRY0x00002000) { | |||
2474 | /* | |||
2475 | * Once a thread is asleep with | |||
2476 | * TDF_SBDRY and without TDF_SERESTART | |||
2477 | * or TDF_SEINTR set, it should never | |||
2478 | * become suspended due to this check. | |||
2479 | */ | |||
2480 | KASSERT(!TD_IS_SUSPENDED(td2),do { } while (0) | |||
2481 | ("thread with deferred stops suspended"))do { } while (0); | |||
2482 | if (TD_SBDRY_INTR(td2)(((td2)->td_flags & (0x00200000 | 0x00080000)) != 0) && sending) { | |||
2483 | wakeup_swapper |= sleepq_abort(td2, | |||
2484 | TD_SBDRY_ERRNO(td2)(((td2)->td_flags & 0x00200000) != 0 ? 4 : (-1))); | |||
2485 | } | |||
2486 | } else if (!TD_IS_SUSPENDED(td2)((td2)->td_inhibitors & 0x0001)) { | |||
2487 | thread_suspend_one(td2); | |||
2488 | } | |||
2489 | } else if (!TD_IS_SUSPENDED(td2)((td2)->td_inhibitors & 0x0001)) { | |||
2490 | if (sending || td != td2) | |||
2491 | td2->td_flags |= TDF_ASTPENDING0x00000800; | |||
2492 | #ifdef SMP1 | |||
2493 | if (TD_IS_RUNNING(td2)((td2)->td_state == TDS_RUNNING) && td2 != td) | |||
2494 | forward_signal(td2); | |||
2495 | #endif | |||
2496 | } | |||
2497 | thread_unlock(td2)do { if ((((((((td2)->td_lock)))))->lock_object.lo_data != 0)) (((((td2)->td_lock))))->lock_object.lo_data--; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) ((((td2)->td_lock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&((((((td2)->td_lock)))))->mtx_lock , 0x00000004); } spinlock_exit(); } while (0); | |||
2498 | } | |||
2499 | return (wakeup_swapper); | |||
2500 | } | |||
2501 | ||||
2502 | int | |||
2503 | ptracestop(struct thread *td, int sig) | |||
2504 | { | |||
2505 | struct proc *p = td->td_proc; | |||
2506 | ||||
2507 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
2508 | KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"))do { } while (0); | |||
2509 | WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,(void)0 | |||
2510 | &p->p_mtx.lock_object, "Stopping for traced signal")(void)0; | |||
2511 | ||||
2512 | td->td_dbgflags |= TDB_XSIG0x00000002; | |||
2513 | td->td_xsig = sig; | |||
2514 | CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",(void)0 | |||
2515 | td->td_tid, p->p_pid, td->td_dbgflags, sig)(void)0; | |||
2516 | PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter (); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock ))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object .lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)-> p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), (( 0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2517 | while ((p->p_flag & P_TRACED0x00800) && (td->td_dbgflags & TDB_XSIG0x00000002)) { | |||
2518 | if (p->p_flag & P_SINGLE_EXIT0x00400 && | |||
2519 | !(td->td_dbgflags & TDB_EXIT0x00000400)) { | |||
2520 | /* | |||
2521 | * Ignore ptrace stops except for thread exit | |||
2522 | * events when the process exits. | |||
2523 | */ | |||
2524 | td->td_dbgflags &= ~TDB_XSIG0x00000002; | |||
2525 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2526 | return (sig); | |||
2527 | } | |||
2528 | /* | |||
2529 | * Just make wait() to work, the last stopped thread | |||
2530 | * will win. | |||
2531 | */ | |||
2532 | p->p_xsig = sig; | |||
2533 | p->p_xthread = td; | |||
2534 | p->p_flag |= (P_STOPPED_SIG0x20000|P_STOPPED_TRACE0x40000); | |||
2535 | sig_suspend_threads(td, p, 0); | |||
2536 | if ((td->td_dbgflags & TDB_STOPATFORK0x00000080) != 0) { | |||
2537 | td->td_dbgflags &= ~TDB_STOPATFORK0x00000080; | |||
2538 | cv_broadcast(&p->p_dbgwait)cv_broadcastpri(&p->p_dbgwait, 0); | |||
2539 | } | |||
2540 | stopme: | |||
2541 | thread_suspend_switch(td, p); | |||
2542 | if (p->p_xthread == td) | |||
2543 | p->p_xthread = NULL((void *)0); | |||
2544 | if (!(p->p_flag & P_TRACED0x00800)) | |||
2545 | break; | |||
2546 | if (td->td_dbgflags & TDB_SUSPEND0x00000001) { | |||
2547 | if (p->p_flag & P_SINGLE_EXIT0x00400) | |||
2548 | break; | |||
2549 | goto stopme; | |||
2550 | } | |||
2551 | } | |||
2552 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2553 | return (td->td_xsig); | |||
2554 | } | |||
2555 | ||||
2556 | static void | |||
2557 | reschedule_signals(struct proc *p, sigset_t block, int flags) | |||
2558 | { | |||
2559 | struct sigacts *ps; | |||
2560 | struct thread *td; | |||
2561 | int sig; | |||
2562 | ||||
2563 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
2564 | ps = p->p_sigacts; | |||
2565 | mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?(void)0 | |||
2566 | MA_OWNED : MA_NOTOWNED)(void)0; | |||
2567 | if (SIGISEMPTY(p->p_siglist)(__sigisempty(&(p->p_sigqueue.sq_signals)))) | |||
2568 | return; | |||
2569 | SIGSETAND(block, p->p_siglist)do { int __i; for (__i = 0; __i < 4; __i++) (block).__bits [__i] &= (p->p_sigqueue.sq_signals).__bits[__i]; } while (0); | |||
2570 | while ((sig = sig_ffs(&block)) != 0) { | |||
2571 | SIGDELSET(block, sig)((block).__bits[(((sig) - 1) >> 5)] &= ~(1 << (((sig) - 1) & 31))); | |||
2572 | td = sigtd(p, sig, 0); | |||
2573 | signotify(td); | |||
2574 | if (!(flags & SIGPROCMASK_PS_LOCKED0x0004)) | |||
2575 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2576 | if (p->p_flag & P_TRACED0x00800 || SIGISMEMBER(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31)))) | |||
2577 | tdsigwakeup(td, sig, SIG_CATCH((__sighandler_t *)2), | |||
2578 | (SIGISMEMBER(ps->ps_sigintr, sig)((ps->ps_sigintr).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31))) ? EINTR4 : | |||
2579 | ERESTART(-1))); | |||
2580 | if (!(flags & SIGPROCMASK_PS_LOCKED0x0004)) | |||
2581 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
2582 | } | |||
2583 | } | |||
2584 | ||||
2585 | void | |||
2586 | tdsigcleanup(struct thread *td) | |||
2587 | { | |||
2588 | struct proc *p; | |||
2589 | sigset_t unblocked; | |||
2590 | ||||
2591 | p = td->td_proc; | |||
2592 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
2593 | ||||
2594 | sigqueue_flush(&td->td_sigqueue); | |||
2595 | if (p->p_numthreads == 1) | |||
2596 | return; | |||
2597 | ||||
2598 | /* | |||
2599 | * Since we cannot handle signals, notify signal post code | |||
2600 | * about this by filling the sigmask. | |||
2601 | * | |||
2602 | * Also, if needed, wake up thread(s) that do not block the | |||
2603 | * same signals as the exiting thread, since the thread might | |||
2604 | * have been selected for delivery and woken up. | |||
2605 | */ | |||
2606 | SIGFILLSET(unblocked)do { int __i; for (__i = 0; __i < 4; __i++) (unblocked).__bits [__i] = ~0U; } while (0); | |||
2607 | SIGSETNAND(unblocked, td->td_sigmask)do { int __i; for (__i = 0; __i < 4; __i++) (unblocked).__bits [__i] &= ~(td->td_sigmask).__bits[__i]; } while (0); | |||
2608 | SIGFILLSET(td->td_sigmask)do { int __i; for (__i = 0; __i < 4; __i++) (td->td_sigmask ).__bits[__i] = ~0U; } while (0); | |||
2609 | reschedule_signals(p, unblocked, 0); | |||
2610 | ||||
2611 | } | |||
2612 | ||||
2613 | static int | |||
2614 | sigdeferstop_curr_flags(int cflags) | |||
2615 | { | |||
2616 | ||||
2617 | MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||do { } while (0) | |||
2618 | (cflags & TDF_SBDRY) != 0)do { } while (0); | |||
2619 | return (cflags & (TDF_SBDRY0x00002000 | TDF_SEINTR0x00200000 | TDF_SERESTART0x00080000)); | |||
2620 | } | |||
2621 | ||||
2622 | /* | |||
2623 | * Defer the delivery of SIGSTOP for the current thread, according to | |||
2624 | * the requested mode. Returns previous flags, which must be restored | |||
2625 | * by sigallowstop(). | |||
2626 | * | |||
2627 | * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and | |||
2628 | * cleared by the current thread, which allow the lock-less read-only | |||
2629 | * accesses below. | |||
2630 | */ | |||
2631 | int | |||
2632 | sigdeferstop_impl(int mode) | |||
2633 | { | |||
2634 | struct thread *td; | |||
2635 | int cflags, nflags; | |||
2636 | ||||
2637 | td = curthread(__curthread()); | |||
2638 | cflags = sigdeferstop_curr_flags(td->td_flags); | |||
2639 | switch (mode) { | |||
2640 | case SIGDEFERSTOP_NOP0: | |||
2641 | nflags = cflags; | |||
2642 | break; | |||
2643 | case SIGDEFERSTOP_OFF1: | |||
2644 | nflags = 0; | |||
2645 | break; | |||
2646 | case SIGDEFERSTOP_SILENT2: | |||
2647 | nflags = (cflags | TDF_SBDRY0x00002000) & ~(TDF_SEINTR0x00200000 | TDF_SERESTART0x00080000); | |||
2648 | break; | |||
2649 | case SIGDEFERSTOP_EINTR3: | |||
2650 | nflags = (cflags | TDF_SBDRY0x00002000 | TDF_SEINTR0x00200000) & ~TDF_SERESTART0x00080000; | |||
2651 | break; | |||
2652 | case SIGDEFERSTOP_ERESTART4: | |||
2653 | nflags = (cflags | TDF_SBDRY0x00002000 | TDF_SERESTART0x00080000) & ~TDF_SEINTR0x00200000; | |||
2654 | break; | |||
2655 | default: | |||
2656 | panic("sigdeferstop: invalid mode %x", mode); | |||
2657 | break; | |||
2658 | } | |||
2659 | if (cflags == nflags) | |||
2660 | return (SIGDEFERSTOP_VAL_NCHG(-1)); | |||
2661 | thread_lock(td)thread_lock_flags_((td), 0, "/usr/src/sys/kern/kern_sig.c", 2661 ); | |||
2662 | td->td_flags = (td->td_flags & ~cflags) | nflags; | |||
2663 | thread_unlock(td)do { if ((((((((td)->td_lock)))))->lock_object.lo_data != 0)) (((((td)->td_lock))))->lock_object.lo_data--; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) ((((td)->td_lock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&((((((td)->td_lock)))))->mtx_lock , 0x00000004); } spinlock_exit(); } while (0); | |||
2664 | return (cflags); | |||
2665 | } | |||
2666 | ||||
2667 | /* | |||
2668 | * Restores the STOP handling mode, typically permitting the delivery | |||
2669 | * of SIGSTOP for the current thread. This does not immediately | |||
2670 | * suspend if a stop was posted. Instead, the thread will suspend | |||
2671 | * either via ast() or a subsequent interruptible sleep. | |||
2672 | */ | |||
2673 | void | |||
2674 | sigallowstop_impl(int prev) | |||
2675 | { | |||
2676 | struct thread *td; | |||
2677 | int cflags; | |||
2678 | ||||
2679 | KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"))do { } while (0); | |||
2680 | KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,do { } while (0) | |||
2681 | ("sigallowstop: incorrect previous mode %x", prev))do { } while (0); | |||
2682 | td = curthread(__curthread()); | |||
2683 | cflags = sigdeferstop_curr_flags(td->td_flags); | |||
2684 | if (cflags != prev) { | |||
2685 | thread_lock(td)thread_lock_flags_((td), 0, "/usr/src/sys/kern/kern_sig.c", 2685 ); | |||
2686 | td->td_flags = (td->td_flags & ~cflags) | prev; | |||
2687 | thread_unlock(td)do { if ((((((((td)->td_lock)))))->lock_object.lo_data != 0)) (((((td)->td_lock))))->lock_object.lo_data--; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) ((((td)->td_lock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&((((((td)->td_lock)))))->mtx_lock , 0x00000004); } spinlock_exit(); } while (0); | |||
2688 | } | |||
2689 | } | |||
2690 | ||||
2691 | /* | |||
2692 | * If the current process has received a signal (should be caught or cause | |||
2693 | * termination, should interrupt current syscall), return the signal number. | |||
2694 | * Stop signals with default action are processed immediately, then cleared; | |||
2695 | * they aren't returned. This is checked after each entry to the system for | |||
2696 | * a syscall or trap (though this can usually be done without calling issignal | |||
2697 | * by checking the pending signal masks in cursig.) The normal call | |||
2698 | * sequence is | |||
2699 | * | |||
2700 | * while (sig = cursig(curthread)) | |||
2701 | * postsig(sig); | |||
2702 | */ | |||
2703 | static int | |||
2704 | issignal(struct thread *td) | |||
2705 | { | |||
2706 | struct proc *p; | |||
2707 | struct sigacts *ps; | |||
2708 | struct sigqueue *queue; | |||
2709 | sigset_t sigpending; | |||
2710 | int sig, prop, newsig; | |||
2711 | ||||
2712 | p = td->td_proc; | |||
2713 | ps = p->p_sigacts; | |||
2714 | mtx_assert(&ps->ps_mtx, MA_OWNED)(void)0; | |||
2715 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
2716 | for (;;) { | |||
2717 | int traced = (p->p_flag & P_TRACED0x00800) || (p->p_stops & S_SIG0x00000002); | |||
2718 | ||||
2719 | sigpending = td->td_sigqueue.sq_signals; | |||
2720 | SIGSETOR(sigpending, p->p_sigqueue.sq_signals)do { int __i; for (__i = 0; __i < 4; __i++) (sigpending).__bits [__i] |= (p->p_sigqueue.sq_signals).__bits[__i]; } while ( 0); | |||
2721 | SIGSETNAND(sigpending, td->td_sigmask)do { int __i; for (__i = 0; __i < 4; __i++) (sigpending).__bits [__i] &= ~(td->td_sigmask).__bits[__i]; } while (0); | |||
2722 | ||||
2723 | if ((p->p_flag & P_PPWAIT0x00010) != 0 || (td->td_flags & | |||
2724 | (TDF_SBDRY0x00002000 | TDF_SERESTART0x00080000 | TDF_SEINTR0x00200000)) == TDF_SBDRY0x00002000) | |||
2725 | SIG_STOPSIGMASK(sigpending)((sigpending).__bits[(((17) - 1) >> 5)] &= ~(1 << (((17) - 1) & 31))), ((sigpending).__bits[(((18) - 1) >> 5)] &= ~(1 << (((18) - 1) & 31))), ((sigpending ).__bits[(((21) - 1) >> 5)] &= ~(1 << (((21) - 1) & 31))), ((sigpending).__bits[(((22) - 1) >> 5) ] &= ~(1 << (((22) - 1) & 31))); | |||
2726 | if (SIGISEMPTY(sigpending)(__sigisempty(&(sigpending)))) /* no signal to send */ | |||
2727 | return (0); | |||
2728 | sig = sig_ffs(&sigpending); | |||
2729 | ||||
2730 | if (p->p_stops & S_SIG0x00000002) { | |||
2731 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
2732 | stopevent(p, S_SIG0x00000002, sig); | |||
2733 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2734 | } | |||
2735 | ||||
2736 | /* | |||
2737 | * We should see pending but ignored signals | |||
2738 | * only if P_TRACED was on when they were posted. | |||
2739 | */ | |||
2740 | if (SIGISMEMBER(ps->ps_sigignore, sig)((ps->ps_sigignore).__bits[(((sig) - 1) >> 5)] & (1 << (((sig) - 1) & 31))) && (traced == 0)) { | |||
2741 | sigqueue_delete(&td->td_sigqueue, sig); | |||
2742 | sigqueue_delete(&p->p_sigqueue, sig); | |||
2743 | continue; | |||
2744 | } | |||
2745 | if (p->p_flag & P_TRACED0x00800 && (p->p_flag & P_PPTRACE0x80000000) == 0) { | |||
2746 | /* | |||
2747 | * If traced, always stop. | |||
2748 | * Remove old signal from queue before the stop. | |||
2749 | * XXX shrug off debugger, it causes siginfo to | |||
2750 | * be thrown away. | |||
2751 | */ | |||
2752 | queue = &td->td_sigqueue; | |||
2753 | td->td_dbgksi.ksi_signoksi_info.si_signo = 0; | |||
2754 | if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) { | |||
2755 | queue = &p->p_sigqueue; | |||
2756 | sigqueue_get(queue, sig, &td->td_dbgksi); | |||
2757 | } | |||
2758 | ||||
2759 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
2760 | newsig = ptracestop(td, sig); | |||
2761 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2762 | ||||
2763 | if (sig != newsig) { | |||
2764 | ||||
2765 | /* | |||
2766 | * If parent wants us to take the signal, | |||
2767 | * then it will leave it in p->p_xsig; | |||
2768 | * otherwise we just look for signals again. | |||
2769 | */ | |||
2770 | if (newsig == 0) | |||
2771 | continue; | |||
2772 | sig = newsig; | |||
2773 | ||||
2774 | /* | |||
2775 | * Put the new signal into td_sigqueue. If the | |||
2776 | * signal is being masked, look for other | |||
2777 | * signals. | |||
2778 | */ | |||
2779 | sigqueue_add(queue, sig, NULL((void *)0)); | |||
2780 | if (SIGISMEMBER(td->td_sigmask, sig)((td->td_sigmask).__bits[(((sig) - 1) >> 5)] & ( 1 << (((sig) - 1) & 31)))) | |||
2781 | continue; | |||
2782 | signotify(td); | |||
2783 | } else { | |||
2784 | if (td->td_dbgksi.ksi_signoksi_info.si_signo != 0) { | |||
2785 | td->td_dbgksi.ksi_flags |= KSI_HEAD0x10; | |||
2786 | if (sigqueue_add(&td->td_sigqueue, sig, | |||
2787 | &td->td_dbgksi) != 0) | |||
2788 | td->td_dbgksi.ksi_signoksi_info.si_signo = 0; | |||
2789 | } | |||
2790 | if (td->td_dbgksi.ksi_signoksi_info.si_signo == 0) | |||
2791 | sigqueue_add(&td->td_sigqueue, sig, | |||
2792 | NULL((void *)0)); | |||
2793 | } | |||
2794 | ||||
2795 | /* | |||
2796 | * If the traced bit got turned off, go back up | |||
2797 | * to the top to rescan signals. This ensures | |||
2798 | * that p_sig* and p_sigact are consistent. | |||
2799 | */ | |||
2800 | if ((p->p_flag & P_TRACED0x00800) == 0) | |||
2801 | continue; | |||
2802 | } | |||
2803 | ||||
2804 | prop = sigprop(sig); | |||
2805 | ||||
2806 | /* | |||
2807 | * Decide whether the signal should be returned. | |||
2808 | * Return the signal's number, or fall through | |||
2809 | * to clear it from the pending mask. | |||
2810 | */ | |||
2811 | switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)((sig) - 1)]) { | |||
2812 | ||||
2813 | case (intptr_t)SIG_DFL((__sighandler_t *)0): | |||
2814 | /* | |||
2815 | * Don't take default actions on system processes. | |||
2816 | */ | |||
2817 | if (p->p_pid <= 1) { | |||
2818 | #ifdef DIAGNOSTIC | |||
2819 | /* | |||
2820 | * Are you sure you want to ignore SIGSEGV | |||
2821 | * in init? XXX | |||
2822 | */ | |||
2823 | printf("Process (pid %lu) got signal %d\n", | |||
2824 | (u_long)p->p_pid, sig); | |||
2825 | #endif | |||
2826 | break; /* == ignore */ | |||
2827 | } | |||
2828 | /* | |||
2829 | * If there is a pending stop signal to process | |||
2830 | * with default action, stop here, | |||
2831 | * then clear the signal. However, | |||
2832 | * if process is member of an orphaned | |||
2833 | * process group, ignore tty stop signals. | |||
2834 | */ | |||
2835 | if (prop & SA_STOP0x04) { | |||
2836 | if (p->p_flag & (P_TRACED0x00800|P_WEXIT0x02000) || | |||
2837 | (p->p_pgrp->pg_jobc == 0 && | |||
2838 | prop & SA_TTYSTOP0x08)) | |||
2839 | break; /* == ignore */ | |||
2840 | if (TD_SBDRY_INTR(td)(((td)->td_flags & (0x00200000 | 0x00080000)) != 0)) { | |||
2841 | KASSERT((td->td_flags & TDF_SBDRY) != 0,do { } while (0) | |||
2842 | ("lost TDF_SBDRY"))do { } while (0); | |||
2843 | return (-1); | |||
2844 | } | |||
2845 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
2846 | WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,(void)0 | |||
2847 | &p->p_mtx.lock_object, "Catching SIGSTOP")(void)0; | |||
2848 | p->p_flag |= P_STOPPED_SIG0x20000; | |||
2849 | p->p_xsig = sig; | |||
2850 | PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter (); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock ))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object .lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)-> p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), (( 0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2851 | sig_suspend_threads(td, p, 0); | |||
2852 | thread_suspend_switch(td, p); | |||
2853 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2854 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2855 | break; | |||
2856 | } else if (prop & SA_IGNORE0x10) { | |||
2857 | /* | |||
2858 | * Except for SIGCONT, shouldn't get here. | |||
2859 | * Default action is to ignore; drop it. | |||
2860 | */ | |||
2861 | break; /* == ignore */ | |||
2862 | } else | |||
2863 | return (sig); | |||
2864 | /*NOTREACHED*/ | |||
2865 | ||||
2866 | case (intptr_t)SIG_IGN((__sighandler_t *)1): | |||
2867 | /* | |||
2868 | * Masking above should prevent us ever trying | |||
2869 | * to take action on an ignored signal other | |||
2870 | * than SIGCONT, unless process is traced. | |||
2871 | */ | |||
2872 | if ((prop & SA_CONT0x20) == 0 && | |||
2873 | (p->p_flag & P_TRACED0x00800) == 0) | |||
2874 | printf("issignal\n"); | |||
2875 | break; /* == ignore */ | |||
2876 | ||||
2877 | default: | |||
2878 | /* | |||
2879 | * This signal has an action, let | |||
2880 | * postsig() process it. | |||
2881 | */ | |||
2882 | return (sig); | |||
2883 | } | |||
2884 | sigqueue_delete(&td->td_sigqueue, sig); /* take the signal! */ | |||
2885 | sigqueue_delete(&p->p_sigqueue, sig); | |||
2886 | } | |||
2887 | /* NOTREACHED */ | |||
2888 | } | |||
2889 | ||||
2890 | void | |||
2891 | thread_stopped(struct proc *p) | |||
2892 | { | |||
2893 | int n; | |||
2894 | ||||
2895 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
2896 | PROC_SLOCK_ASSERT(p, MA_OWNED)(void)0; | |||
2897 | n = p->p_suspcount; | |||
2898 | if (p == curproc((__curthread())->td_proc)) | |||
2899 | n++; | |||
2900 | if ((p->p_flag & P_STOPPED_SIG0x20000) && (n == p->p_numthreads)) { | |||
2901 | PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data != 0)) ((((&(p)->p_slock))))->lock_object.lo_data-- ; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); atomic_store_rel_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004); } spinlock_exit(); } while (0); | |||
2902 | p->p_flag &= ~P_WAITED0x01000; | |||
2903 | PROC_LOCK(p->p_pptr)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p->p_pptr)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(p->p_pptr)->p_mtx) ))))->mtx_lock, 0x00000004, (_tid)))) __mtx_lock_sleep(& (((((&(p->p_pptr)->p_mtx)))))->mtx_lock, _tid, ( ((0))), ((((void *)0))), ((0))); else do { (void)0; do { if ( __builtin_expect((sdt_lockstat___adaptive__acquire->id), 0 )) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire->id, (uintptr_t) (((&(p->p_pptr)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0) ; } while (0); } while (0); | |||
2904 | childproc_stopped(p, (p->p_flag & P_TRACED0x00800) ? | |||
2905 | CLD_TRAPPED4 : CLD_STOPPED5); | |||
2906 | PROC_UNLOCK(p->p_pptr)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p->p_pptr)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release ->id, (uintptr_t) (((&(p->p_pptr)->p_mtx))), (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0 ); } while (0); if (((((&(p->p_pptr)->p_mtx))))-> mtx_lock != _tid || !atomic_cmpset_long(&(((((&(p-> p_pptr)->p_mtx)))))->mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep (&(((((&(p->p_pptr)->p_mtx)))))->mtx_lock, ( ((0))), ((((void *)0))), ((0))); } while (0); | |||
2907 | PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter (); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(p)->p_slock)))))-> mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock ))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object .lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)-> p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), (( 0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire-> id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2908 | } | |||
2909 | } | |||
2910 | ||||
2911 | /* | |||
2912 | * Take the action for the specified signal | |||
2913 | * from the current set of pending signals. | |||
2914 | */ | |||
2915 | int | |||
2916 | postsig(sig) | |||
2917 | register int sig; | |||
2918 | { | |||
2919 | struct thread *td = curthread(__curthread()); | |||
2920 | register struct proc *p = td->td_proc; | |||
2921 | struct sigacts *ps; | |||
2922 | sig_t action; | |||
2923 | ksiginfo_t ksi; | |||
2924 | sigset_t returnmask; | |||
2925 | ||||
2926 | KASSERT(sig != 0, ("postsig"))do { } while (0); | |||
2927 | ||||
2928 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
2929 | ps = p->p_sigacts; | |||
2930 | mtx_assert(&ps->ps_mtx, MA_OWNED)(void)0; | |||
2931 | ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0); | |||
2932 | if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 && | |||
2933 | sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0) | |||
2934 | return (0); | |||
2935 | ksi.ksi_signoksi_info.si_signo = sig; | |||
2936 | if (ksi.ksi_codeksi_info.si_code == SI_TIMER0x10003) | |||
2937 | itimer_accept(p, ksi.ksi_timeridksi_info._reason._timer._timerid, &ksi); | |||
2938 | action = ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)]; | |||
2939 | #ifdef KTRACE1 | |||
2940 | if (KTRPOINT(td, KTR_PSIG)((((td))->td_proc->p_traceflag & (1 << (5))) && !((td)->td_pflags & 0x00000004))) | |||
2941 | ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK0x00000001 ? | |||
2942 | &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_codeksi_info.si_code); | |||
2943 | #endif | |||
2944 | if (p->p_stops & S_SIG0x00000002) { | |||
2945 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
2946 | stopevent(p, S_SIG0x00000002, sig); | |||
2947 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
2948 | } | |||
2949 | ||||
2950 | if (action == SIG_DFL((__sighandler_t *)0)) { | |||
2951 | /* | |||
2952 | * Default action, where the default is to kill | |||
2953 | * the process. (Other cases were ignored above.) | |||
2954 | */ | |||
2955 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
2956 | sigexit(td, sig); | |||
2957 | /* NOTREACHED */ | |||
2958 | } else { | |||
2959 | /* | |||
2960 | * If we get here, the signal must be caught. | |||
2961 | */ | |||
2962 | KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),do { } while (0) | |||
2963 | ("postsig action"))do { } while (0); | |||
2964 | /* | |||
2965 | * Set the new mask value and also defer further | |||
2966 | * occurrences of this signal. | |||
2967 | * | |||
2968 | * Special case: user has done a sigsuspend. Here the | |||
2969 | * current mask is not of interest, but rather the | |||
2970 | * mask from before the sigsuspend is what we want | |||
2971 | * restored after the signal processing is completed. | |||
2972 | */ | |||
2973 | if (td->td_pflags & TDP_OLDMASK0x00000001) { | |||
2974 | returnmask = td->td_oldsigmask; | |||
2975 | td->td_pflags &= ~TDP_OLDMASK0x00000001; | |||
2976 | } else | |||
2977 | returnmask = td->td_sigmask; | |||
2978 | ||||
2979 | if (p->p_sig == sig) { | |||
2980 | p->p_code = 0; | |||
2981 | p->p_sig = 0; | |||
2982 | } | |||
2983 | (*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask); | |||
2984 | postsig_done(sig, td, ps); | |||
2985 | } | |||
2986 | return (1); | |||
2987 | } | |||
2988 | ||||
2989 | /* | |||
2990 | * Kill the current process for stated reason. | |||
2991 | */ | |||
2992 | void | |||
2993 | killproc(p, why) | |||
2994 | struct proc *p; | |||
2995 | char *why; | |||
2996 | { | |||
2997 | ||||
2998 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
2999 | CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,(void)0 | |||
3000 | p->p_comm)(void)0; | |||
3001 | log(LOG_ERR3, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, | |||
3002 | p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why); | |||
3003 | p->p_flag |= P_WKILLED0x08000; | |||
3004 | kern_psignal(p, SIGKILL9); | |||
3005 | } | |||
3006 | ||||
3007 | /* | |||
3008 | * Force the current process to exit with the specified signal, dumping core | |||
3009 | * if appropriate. We bypass the normal tests for masked and caught signals, | |||
3010 | * allowing unrecoverable failures to terminate the process without changing | |||
3011 | * signal state. Mark the accounting record with the signal termination. | |||
3012 | * If dumping core, save the signal number for the debugger. Calls exit and | |||
3013 | * does not return. | |||
3014 | */ | |||
3015 | void | |||
3016 | sigexit(td, sig) | |||
3017 | struct thread *td; | |||
3018 | int sig; | |||
3019 | { | |||
3020 | struct proc *p = td->td_proc; | |||
3021 | ||||
3022 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
3023 | p->p_acflag |= AXSIG0x10; | |||
3024 | /* | |||
3025 | * We must be single-threading to generate a core dump. This | |||
3026 | * ensures that the registers in the core file are up-to-date. | |||
3027 | * Also, the ELF dump handler assumes that the thread list doesn't | |||
3028 | * change out from under it. | |||
3029 | * | |||
3030 | * XXX If another thread attempts to single-thread before us | |||
3031 | * (e.g. via fork()), we won't get a dump at all. | |||
3032 | */ | |||
3033 | if ((sigprop(sig) & SA_CORE0x02) && thread_single(p, SINGLE_NO_EXIT0) == 0) { | |||
3034 | p->p_sig = sig; | |||
3035 | /* | |||
3036 | * Log signals which would cause core dumps | |||
3037 | * (Log as LOG_INFO to appease those who don't want | |||
3038 | * these messages.) | |||
3039 | * XXX : Todo, as well as euid, write out ruid too | |||
3040 | * Note that coredump() drops proc lock. | |||
3041 | */ | |||
3042 | if (coredump(td) == 0) | |||
3043 | sig |= WCOREFLAG0200; | |||
3044 | if (kern_logsigexit) | |||
3045 | log(LOG_INFO6, | |||
3046 | "pid %d (%s), uid %d: exited on signal %d%s\n", | |||
3047 | p->p_pid, p->p_comm, | |||
3048 | td->td_ucred ? td->td_ucred->cr_uid : -1, | |||
3049 | sig &~ WCOREFLAG0200, | |||
3050 | sig & WCOREFLAG0200 ? " (core dumped)" : ""); | |||
3051 | } else | |||
3052 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
3053 | exit1(td, 0, sig); | |||
3054 | /* NOTREACHED */ | |||
3055 | } | |||
3056 | ||||
3057 | /* | |||
3058 | * Send queued SIGCHLD to parent when child process's state | |||
3059 | * is changed. | |||
3060 | */ | |||
3061 | static void | |||
3062 | sigparent(struct proc *p, int reason, int status) | |||
3063 | { | |||
3064 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
3065 | PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED)(void)0; | |||
3066 | ||||
3067 | if (p->p_ksi != NULL((void *)0)) { | |||
3068 | p->p_ksi->ksi_signoksi_info.si_signo = SIGCHLD20; | |||
3069 | p->p_ksi->ksi_codeksi_info.si_code = reason; | |||
3070 | p->p_ksi->ksi_statusksi_info.si_status = status; | |||
3071 | p->p_ksi->ksi_pidksi_info.si_pid = p->p_pid; | |||
3072 | p->p_ksi->ksi_uidksi_info.si_uid = p->p_ucred->cr_ruid; | |||
3073 | if (KSI_ONQ(p->p_ksi)((p->p_ksi)->ksi_sigq != ((void *)0))) | |||
3074 | return; | |||
3075 | } | |||
3076 | pksignal(p->p_pptr, SIGCHLD20, p->p_ksi); | |||
3077 | } | |||
3078 | ||||
3079 | static void | |||
3080 | childproc_jobstate(struct proc *p, int reason, int sig) | |||
3081 | { | |||
3082 | struct sigacts *ps; | |||
3083 | ||||
3084 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
3085 | PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED)(void)0; | |||
3086 | ||||
3087 | /* | |||
3088 | * Wake up parent sleeping in kern_wait(), also send | |||
3089 | * SIGCHLD to parent, but SIGCHLD does not guarantee | |||
3090 | * that parent will awake, because parent may masked | |||
3091 | * the signal. | |||
3092 | */ | |||
3093 | p->p_pptr->p_flag |= P_STATCHILD0x8000000; | |||
3094 | wakeup(p->p_pptr); | |||
3095 | ||||
3096 | ps = p->p_pptr->p_sigacts; | |||
3097 | mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
3098 | if ((ps->ps_flag & PS_NOCLDSTOP0x0002) == 0) { | |||
3099 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
3100 | sigparent(p, reason, sig); | |||
3101 | } else | |||
3102 | mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
3103 | } | |||
3104 | ||||
3105 | void | |||
3106 | childproc_stopped(struct proc *p, int reason) | |||
3107 | { | |||
3108 | ||||
3109 | childproc_jobstate(p, reason, p->p_xsig); | |||
3110 | } | |||
3111 | ||||
3112 | void | |||
3113 | childproc_continued(struct proc *p) | |||
3114 | { | |||
3115 | childproc_jobstate(p, CLD_CONTINUED6, SIGCONT19); | |||
3116 | } | |||
3117 | ||||
3118 | void | |||
3119 | childproc_exited(struct proc *p) | |||
3120 | { | |||
3121 | int reason, status; | |||
3122 | ||||
3123 | if (WCOREDUMP(p->p_xsig)((p->p_xsig) & 0200)) { | |||
3124 | reason = CLD_DUMPED3; | |||
3125 | status = WTERMSIG(p->p_xsig)(((p->p_xsig) & 0177)); | |||
3126 | } else if (WIFSIGNALED(p->p_xsig)(((p->p_xsig) & 0177) != 0177 && ((p->p_xsig ) & 0177) != 0 && (p->p_xsig) != 0x13)) { | |||
3127 | reason = CLD_KILLED2; | |||
3128 | status = WTERMSIG(p->p_xsig)(((p->p_xsig) & 0177)); | |||
3129 | } else { | |||
3130 | reason = CLD_EXITED1; | |||
3131 | status = p->p_xexit; | |||
3132 | } | |||
3133 | /* | |||
3134 | * XXX avoid calling wakeup(p->p_pptr), the work is | |||
3135 | * done in exit1(). | |||
3136 | */ | |||
3137 | sigparent(p, reason, status); | |||
3138 | } | |||
3139 | ||||
3140 | /* | |||
3141 | * We only have 1 character for the core count in the format | |||
3142 | * string, so the range will be 0-9 | |||
3143 | */ | |||
3144 | #define MAX_NUM_CORES10 10 | |||
3145 | static int num_cores = 5; | |||
3146 | ||||
3147 | static int | |||
3148 | sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGSstruct sysctl_oid *oidp, void *arg1, intmax_t arg2, struct sysctl_req *req) | |||
3149 | { | |||
3150 | int error; | |||
3151 | int new_val; | |||
3152 | ||||
3153 | new_val = num_cores; | |||
3154 | error = sysctl_handle_int(oidp, &new_val, 0, req); | |||
3155 | if (error != 0 || req->newptr == NULL((void *)0)) | |||
3156 | return (error); | |||
3157 | if (new_val > MAX_NUM_CORES10) | |||
3158 | new_val = MAX_NUM_CORES10; | |||
3159 | if (new_val < 0) | |||
3160 | new_val = 0; | |||
3161 | num_cores = new_val; | |||
3162 | return (0); | |||
3163 | } | |||
3164 | SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,static struct sysctl_oid sysctl___debug_ncores = { .oid_parent = ((&(&sysctl___debug)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = ((2|(0x80000000 |0x40000000))), .oid_arg1 = (0), .oid_arg2 = (sizeof(int)), . oid_name = ("ncores"), .oid_handler = (sysctl_debug_num_cores_check ), .oid_fmt = ("I"), .oid_descr = "" }; __asm__(".globl " "__start_set_sysctl_set" ); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___debug_ncores __attribute__ ((__section__("set_" "sysctl_set"))) __attribute__((__used__) ) = &(sysctl___debug_ncores); _Static_assert(((2|(0x80000000 |0x40000000)) & 0xf) != 0, "compile-time assertion failed" ) | |||
3165 | 0, sizeof(int), sysctl_debug_num_cores_check, "I", "")static struct sysctl_oid sysctl___debug_ncores = { .oid_parent = ((&(&sysctl___debug)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = ((2|(0x80000000 |0x40000000))), .oid_arg1 = (0), .oid_arg2 = (sizeof(int)), . oid_name = ("ncores"), .oid_handler = (sysctl_debug_num_cores_check ), .oid_fmt = ("I"), .oid_descr = "" }; __asm__(".globl " "__start_set_sysctl_set" ); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___debug_ncores __attribute__ ((__section__("set_" "sysctl_set"))) __attribute__((__used__) ) = &(sysctl___debug_ncores); _Static_assert(((2|(0x80000000 |0x40000000)) & 0xf) != 0, "compile-time assertion failed" ); | |||
3166 | ||||
3167 | #define GZ_SUFFIX".gz" ".gz" | |||
3168 | ||||
3169 | #ifdef GZIO | |||
3170 | static int compress_user_cores = 1; | |||
3171 | SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RWTUN,static struct sysctl_oid sysctl___kern_compress_user_cores = { .oid_parent = ((&(&sysctl___kern)->oid_children)) , .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))), .oid_arg1 = (&compress_user_cores), .oid_arg2 = (0), .oid_name = ("compress_user_cores"), .oid_handler = (sysctl_handle_int ), .oid_fmt = ("I"), .oid_descr = "Compression of user corefiles" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_compress_user_cores __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_compress_user_cores); _Static_assert ((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || ( (((0x80000000|0x40000000)|0x00080000)) & 0) == 2) && sizeof(int) == sizeof(*(&compress_user_cores)), "compile-time assertion failed" ) | |||
3172 | &compress_user_cores, 0, "Compression of user corefiles")static struct sysctl_oid sysctl___kern_compress_user_cores = { .oid_parent = ((&(&sysctl___kern)->oid_children)) , .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))), .oid_arg1 = (&compress_user_cores), .oid_arg2 = (0), .oid_name = ("compress_user_cores"), .oid_handler = (sysctl_handle_int ), .oid_fmt = ("I"), .oid_descr = "Compression of user corefiles" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_compress_user_cores __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_compress_user_cores); _Static_assert ((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || ( (((0x80000000|0x40000000)|0x00080000)) & 0) == 2) && sizeof(int) == sizeof(*(&compress_user_cores)), "compile-time assertion failed" ); | |||
3173 | ||||
3174 | int compress_user_cores_gzlevel = 6; | |||
3175 | SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RWTUN,static struct sysctl_oid sysctl___kern_compress_user_cores_gzlevel = { .oid_parent = ((&(&sysctl___kern)->oid_children )), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))), .oid_arg1 = (&compress_user_cores_gzlevel), .oid_arg2 = ( 0), .oid_name = ("compress_user_cores_gzlevel"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Corefile gzip compression level" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_compress_user_cores_gzlevel __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_compress_user_cores_gzlevel ); _Static_assert((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || ((((0x80000000|0x40000000)|0x00080000)) & 0 ) == 2) && sizeof(int) == sizeof(*(&compress_user_cores_gzlevel )), "compile-time assertion failed") | |||
3176 | &compress_user_cores_gzlevel, 0, "Corefile gzip compression level")static struct sysctl_oid sysctl___kern_compress_user_cores_gzlevel = { .oid_parent = ((&(&sysctl___kern)->oid_children )), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))), .oid_arg1 = (&compress_user_cores_gzlevel), .oid_arg2 = ( 0), .oid_name = ("compress_user_cores_gzlevel"), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Corefile gzip compression level" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_compress_user_cores_gzlevel __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_compress_user_cores_gzlevel ); _Static_assert((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || ((((0x80000000|0x40000000)|0x00080000)) & 0 ) == 2) && sizeof(int) == sizeof(*(&compress_user_cores_gzlevel )), "compile-time assertion failed"); | |||
3177 | #else | |||
3178 | static int compress_user_cores = 0; | |||
3179 | #endif | |||
3180 | ||||
3181 | /* | |||
3182 | * Protect the access to corefilename[] by allproc_lock. | |||
3183 | */ | |||
3184 | #define corefilename_lockallproc_lock allproc_lock | |||
3185 | ||||
3186 | static char corefilename[MAXPATHLEN1024] = {"%N.core"}; | |||
3187 | TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename))static struct tunable_str __tunable_str_3187 = { ("kern.corefile" ), (corefilename), (sizeof(corefilename)), }; static struct sysinit __Tunable_init_3187_sys_init = { SI_SUB_TUNABLES, SI_ORDER_MIDDLE , (sysinit_cfunc_t)(sysinit_nfunc_t)tunable_str_init, ((void * )(&__tunable_str_3187)) }; __asm__(".globl " "__start_set_sysinit_set" ); __asm__(".globl " "__stop_set_sysinit_set"); static void const * const __set_sysinit_set_sym___Tunable_init_3187_sys_init __attribute__ ((__section__("set_" "sysinit_set"))) __attribute__((__used__ )) = &(__Tunable_init_3187_sys_init); | |||
3188 | ||||
3189 | static int | |||
3190 | sysctl_kern_corefile(SYSCTL_HANDLER_ARGSstruct sysctl_oid *oidp, void *arg1, intmax_t arg2, struct sysctl_req *req) | |||
3191 | { | |||
3192 | int error; | |||
3193 | ||||
3194 | sx_xlock(&corefilename_lock)(void)__sx_xlock(((&allproc_lock)), (__curthread()), 0, ( ((void *)0)), (0)); | |||
3195 | error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename), | |||
3196 | req); | |||
3197 | sx_xunlock(&corefilename_lock)__sx_xunlock(((&allproc_lock)), (__curthread()), (((void * )0)), (0)); | |||
3198 | ||||
3199 | return (error); | |||
3200 | } | |||
3201 | SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |static struct sysctl_oid sysctl___kern_corefile = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = ((3 | ( 0x80000000|0x40000000) | 0x00040000)), .oid_arg1 = (0), .oid_arg2 = (0), .oid_name = ("corefile"), .oid_handler = (sysctl_kern_corefile ), .oid_fmt = ("A"), .oid_descr = "Process corefile name format string" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_corefile __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_corefile); _Static_assert( ((3 | (0x80000000|0x40000000) | 0x00040000) & 0xf) != 0, "compile-time assertion failed" ) | |||
3202 | CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",static struct sysctl_oid sysctl___kern_corefile = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = ((3 | ( 0x80000000|0x40000000) | 0x00040000)), .oid_arg1 = (0), .oid_arg2 = (0), .oid_name = ("corefile"), .oid_handler = (sysctl_kern_corefile ), .oid_fmt = ("A"), .oid_descr = "Process corefile name format string" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_corefile __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_corefile); _Static_assert( ((3 | (0x80000000|0x40000000) | 0x00040000) & 0xf) != 0, "compile-time assertion failed" ) | |||
3203 | "Process corefile name format string")static struct sysctl_oid sysctl___kern_corefile = { .oid_parent = ((&(&sysctl___kern)->oid_children)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind = ((3 | ( 0x80000000|0x40000000) | 0x00040000)), .oid_arg1 = (0), .oid_arg2 = (0), .oid_name = ("corefile"), .oid_handler = (sysctl_kern_corefile ), .oid_fmt = ("A"), .oid_descr = "Process corefile name format string" }; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_corefile __attribute__((__section__("set_" "sysctl_set"))) __attribute__ ((__used__)) = &(sysctl___kern_corefile); _Static_assert( ((3 | (0x80000000|0x40000000) | 0x00040000) & 0xf) != 0, "compile-time assertion failed" ); | |||
3204 | ||||
3205 | /* | |||
3206 | * corefile_open(comm, uid, pid, td, compress, vpp, namep) | |||
3207 | * Expand the name described in corefilename, using name, uid, and pid | |||
3208 | * and open/create core file. | |||
3209 | * corefilename is a printf-like string, with three format specifiers: | |||
3210 | * %N name of process ("name") | |||
3211 | * %P process id (pid) | |||
3212 | * %U user id (uid) | |||
3213 | * For example, "%N.core" is the default; they can be disabled completely | |||
3214 | * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P". | |||
3215 | * This is controlled by the sysctl variable kern.corefile (see above). | |||
3216 | */ | |||
3217 | static int | |||
3218 | corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td, | |||
3219 | int compress, struct vnode **vpp, char **namep) | |||
3220 | { | |||
3221 | struct nameidata nd; | |||
3222 | struct sbuf sb; | |||
3223 | const char *format; | |||
3224 | char *hostname, *name; | |||
3225 | int indexpos, i, error, cmode, flags, oflags; | |||
3226 | ||||
3227 | hostname = NULL((void *)0); | |||
3228 | format = corefilename; | |||
3229 | name = malloc(MAXPATHLEN1024, M_TEMP, M_WAITOK0x0002 | M_ZERO0x0100); | |||
3230 | indexpos = -1; | |||
3231 | (void)sbuf_new(&sb, name, MAXPATHLEN1024, SBUF_FIXEDLEN0x00000000); | |||
3232 | sx_slock(&corefilename_lock)(void)__sx_slock(((&allproc_lock)), 0, (((void *)0)), (0) ); | |||
3233 | for (i = 0; format[i] != '\0'; i++) { | |||
3234 | switch (format[i]) { | |||
3235 | case '%': /* Format character */ | |||
3236 | i++; | |||
3237 | switch (format[i]) { | |||
3238 | case '%': | |||
3239 | sbuf_putc(&sb, '%'); | |||
3240 | break; | |||
3241 | case 'H': /* hostname */ | |||
3242 | if (hostname == NULL((void *)0)) { | |||
3243 | hostname = malloc(MAXHOSTNAMELEN256, | |||
3244 | M_TEMP, M_WAITOK0x0002); | |||
3245 | } | |||
3246 | getcredhostname(td->td_ucred, hostname, | |||
3247 | MAXHOSTNAMELEN256); | |||
3248 | sbuf_printf(&sb, "%s", hostname); | |||
3249 | break; | |||
3250 | case 'I': /* autoincrementing index */ | |||
3251 | sbuf_printf(&sb, "0"); | |||
3252 | indexpos = sbuf_len(&sb) - 1; | |||
3253 | break; | |||
3254 | case 'N': /* process name */ | |||
3255 | sbuf_printf(&sb, "%s", comm); | |||
3256 | break; | |||
3257 | case 'P': /* process id */ | |||
3258 | sbuf_printf(&sb, "%u", pid); | |||
3259 | break; | |||
3260 | case 'U': /* user id */ | |||
3261 | sbuf_printf(&sb, "%u", uid); | |||
3262 | break; | |||
3263 | default: | |||
3264 | log(LOG_ERR3, | |||
3265 | "Unknown format character %c in " | |||
3266 | "corename `%s'\n", format[i], format); | |||
3267 | break; | |||
3268 | } | |||
3269 | break; | |||
3270 | default: | |||
3271 | sbuf_putc(&sb, format[i]); | |||
3272 | break; | |||
3273 | } | |||
3274 | } | |||
3275 | sx_sunlock(&corefilename_lock)__sx_sunlock(((&allproc_lock)), (((void *)0)), (0)); | |||
3276 | free(hostname, M_TEMP); | |||
3277 | if (compress) | |||
3278 | sbuf_printf(&sb, GZ_SUFFIX".gz"); | |||
3279 | if (sbuf_error(&sb) != 0) { | |||
3280 | log(LOG_ERR3, "pid %ld (%s), uid (%lu): corename is too " | |||
3281 | "long\n", (long)pid, comm, (u_long)uid); | |||
3282 | sbuf_delete(&sb); | |||
3283 | free(name, M_TEMP); | |||
3284 | return (ENOMEM12); | |||
3285 | } | |||
3286 | sbuf_finish(&sb); | |||
3287 | sbuf_delete(&sb); | |||
3288 | ||||
3289 | cmode = S_IRUSR0000400 | S_IWUSR0000200; | |||
3290 | oflags = VN_OPEN_NOAUDIT0x00000001 | VN_OPEN_NAMECACHE0x00000004 | | |||
3291 | (capmode_coredump ? VN_OPEN_NOCAPCHECK0x00000002 : 0); | |||
3292 | ||||
3293 | /* | |||
3294 | * If the core format has a %I in it, then we need to check | |||
3295 | * for existing corefiles before returning a name. | |||
3296 | * To do this we iterate over 0..num_cores to find a | |||
3297 | * non-existing core file name to use. | |||
3298 | */ | |||
3299 | if (indexpos != -1) { | |||
3300 | for (i = 0; i < num_cores; i++) { | |||
3301 | flags = O_CREAT0x0200 | O_EXCL0x0800 | FWRITE0x0002 | O_NOFOLLOW0x0100; | |||
3302 | name[indexpos] = '0' + i; | |||
3303 | NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td)NDINIT_ALL(&nd, 0, 0x0000, UIO_SYSSPACE, name, -100, ((void *)0), 0, td); | |||
3304 | error = vn_open_cred(&nd, &flags, cmode, oflags, | |||
3305 | td->td_ucred, NULL((void *)0)); | |||
3306 | if (error) { | |||
3307 | if (error == EEXIST17) | |||
3308 | continue; | |||
3309 | log(LOG_ERR3, | |||
3310 | "pid %d (%s), uid (%u): Path `%s' failed " | |||
3311 | "on initial open test, error = %d\n", | |||
3312 | pid, comm, uid, name, error); | |||
3313 | } | |||
3314 | goto out; | |||
3315 | } | |||
3316 | } | |||
3317 | ||||
3318 | flags = O_CREAT0x0200 | FWRITE0x0002 | O_NOFOLLOW0x0100; | |||
3319 | NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td)NDINIT_ALL(&nd, 0, 0x0000, UIO_SYSSPACE, name, -100, ((void *)0), 0, td); | |||
3320 | error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL((void *)0)); | |||
3321 | out: | |||
3322 | if (error) { | |||
3323 | #ifdef AUDIT1 | |||
3324 | audit_proc_coredump(td, name, error); | |||
3325 | #endif | |||
3326 | free(name, M_TEMP); | |||
3327 | return (error); | |||
3328 | } | |||
3329 | NDFREE(&nd, NDF_ONLY_PNBUF(~0x00000020)); | |||
3330 | *vpp = nd.ni_vp; | |||
3331 | *namep = name; | |||
3332 | return (0); | |||
3333 | } | |||
3334 | ||||
3335 | static int | |||
3336 | coredump_sanitise_path(const char *path) | |||
3337 | { | |||
3338 | size_t i; | |||
3339 | ||||
3340 | /* | |||
3341 | * Only send a subset of ASCII to devd(8) because it | |||
3342 | * might pass these strings to sh -c. | |||
3343 | */ | |||
3344 | for (i = 0; path[i]; i++) | |||
3345 | if (!(isalpha(path[i])(((path[i]) >= 'A' && (path[i]) <= 'Z') || ((path [i]) >= 'a' && (path[i]) <= 'z')) || isdigit(path[i])((path[i]) >= '0' && (path[i]) <= '9')) && | |||
3346 | path[i] != '/' && path[i] != '.' && | |||
3347 | path[i] != '-') | |||
3348 | return (0); | |||
3349 | ||||
3350 | return (1); | |||
3351 | } | |||
3352 | ||||
3353 | /* | |||
3354 | * Dump a process' core. The main routine does some | |||
3355 | * policy checking, and creates the name of the coredump; | |||
3356 | * then it passes on a vnode and a size limit to the process-specific | |||
3357 | * coredump routine if there is one; if there _is not_ one, it returns | |||
3358 | * ENOSYS; otherwise it returns the error from the process-specific routine. | |||
3359 | */ | |||
3360 | ||||
3361 | static int | |||
3362 | coredump(struct thread *td) | |||
3363 | { | |||
3364 | struct proc *p = td->td_proc; | |||
3365 | struct ucred *cred = td->td_ucred; | |||
3366 | struct vnode *vp; | |||
3367 | struct flock lf; | |||
3368 | struct vattr vattr; | |||
3369 | int error, error1, locked; | |||
3370 | char *name; /* name of corefile */ | |||
3371 | void *rl_cookie; | |||
3372 | off_t limit; | |||
3373 | char *data = NULL((void *)0); | |||
3374 | char *fullpath, *freepath = NULL((void *)0); | |||
3375 | size_t len; | |||
3376 | static const char comm_name[] = "comm="; | |||
3377 | static const char core_name[] = "core="; | |||
3378 | ||||
3379 | PROC_LOCK_ASSERT(p, MA_OWNED)(void)0; | |||
3380 | MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td)do { } while (0); | |||
3381 | _STOPEVENT(p, S_CORE, 0)do { (void)0; (void)0; if ((p)->p_stops & (0x00000010) ) stopevent((p), (0x00000010), (0)); } while (0); | |||
3382 | ||||
3383 | if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID0x00100) != 0) || | |||
3384 | (p->p_flag2 & P2_NOTRACE0x00000002) != 0) { | |||
3385 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
3386 | return (EFAULT14); | |||
3387 | } | |||
3388 | ||||
3389 | /* | |||
3390 | * Note that the bulk of limit checking is done after | |||
3391 | * the corefile is created. The exception is if the limit | |||
3392 | * for corefiles is 0, in which case we don't bother | |||
3393 | * creating the corefile at all. This layout means that | |||
3394 | * a corefile is truncated instead of not being created, | |||
3395 | * if it is larger than the limit. | |||
3396 | */ | |||
3397 | limit = (off_t)lim_cur(td, RLIMIT_CORE4); | |||
3398 | if (limit == 0 || racct_get_available(p, RACCT_CORE3) == 0) { | |||
3399 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
3400 | return (EFBIG27); | |||
3401 | } | |||
3402 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
3403 | ||||
3404 | error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, | |||
3405 | compress_user_cores, &vp, &name); | |||
3406 | if (error != 0) | |||
3407 | return (error); | |||
3408 | ||||
3409 | /* | |||
3410 | * Don't dump to non-regular files or files with links. | |||
3411 | * Do not dump into system files. | |||
3412 | */ | |||
3413 | if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 || | |||
3414 | vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM0x0080) != 0) { | |||
3415 | VOP_UNLOCK(vp, 0); | |||
3416 | error = EFAULT14; | |||
3417 | goto out; | |||
3418 | } | |||
3419 | ||||
3420 | VOP_UNLOCK(vp, 0); | |||
3421 | ||||
3422 | /* Postpone other writers, including core dumps of other processes. */ | |||
3423 | rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX)rangelock_wlock(&(vp)->v_rl, (0), (0x7fffffffffffffff) , (&(vp)->v_interlock)); | |||
3424 | ||||
3425 | lf.l_whence = SEEK_SET0; | |||
3426 | lf.l_start = 0; | |||
3427 | lf.l_len = 0; | |||
3428 | lf.l_type = F_WRLCK3; | |||
3429 | locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK12, &lf, F_FLOCK0x020) == 0); | |||
3430 | ||||
3431 | VATTR_NULL(&vattr)(*(&vattr) = va_null); | |||
3432 | vattr.va_size = 0; | |||
3433 | if (set_core_nodump_flag) | |||
3434 | vattr.va_flags = UF_NODUMP0x00000001; | |||
3435 | vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)_vn_lock(vp, 0x080000 | 0x000400, "/usr/src/sys/kern/kern_sig.c" , 3435); | |||
3436 | VOP_SETATTR(vp, &vattr, cred); | |||
3437 | VOP_UNLOCK(vp, 0); | |||
3438 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
3439 | p->p_acflag |= ACORE0x08; | |||
3440 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
3441 | ||||
3442 | if (p->p_sysent->sv_coredump != NULL((void *)0)) { | |||
3443 | error = p->p_sysent->sv_coredump(td, vp, limit, | |||
3444 | compress_user_cores ? IMGACT_CORE_COMPRESS0x01 : 0); | |||
3445 | } else { | |||
3446 | error = ENOSYS78; | |||
3447 | } | |||
3448 | ||||
3449 | if (locked) { | |||
3450 | lf.l_type = F_UNLCK2; | |||
3451 | VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK2, &lf, F_FLOCK0x020); | |||
3452 | } | |||
3453 | vn_rangelock_unlock(vp, rl_cookie)rangelock_unlock(&(vp)->v_rl, (rl_cookie), (&(vp)-> v_interlock)); | |||
3454 | ||||
3455 | /* | |||
3456 | * Notify the userland helper that a process triggered a core dump. | |||
3457 | * This allows the helper to run an automated debugging session. | |||
3458 | */ | |||
3459 | if (error != 0 || coredump_devctl == 0) | |||
3460 | goto out; | |||
3461 | len = MAXPATHLEN1024 * 2 + sizeof(comm_name) - 1 + | |||
3462 | sizeof(' ') + sizeof(core_name) - 1; | |||
3463 | data = malloc(len, M_TEMP, M_WAITOK0x0002); | |||
3464 | if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0) | |||
3465 | goto out; | |||
3466 | if (!coredump_sanitise_path(fullpath)) | |||
3467 | goto out; | |||
3468 | snprintf(data, len, "%s%s ", comm_name, fullpath); | |||
3469 | free(freepath, M_TEMP); | |||
3470 | freepath = NULL((void *)0); | |||
3471 | if (vn_fullpath_global(td, vp, &fullpath, &freepath) != 0) | |||
3472 | goto out; | |||
3473 | if (!coredump_sanitise_path(fullpath)) | |||
3474 | goto out; | |||
3475 | strlcat(data, core_name, len); | |||
3476 | strlcat(data, fullpath, len); | |||
3477 | devctl_notify("kernel", "signal", "coredump", data); | |||
3478 | out: | |||
3479 | error1 = vn_close(vp, FWRITE0x0002, cred, td); | |||
3480 | if (error == 0) | |||
3481 | error = error1; | |||
3482 | #ifdef AUDIT1 | |||
3483 | audit_proc_coredump(td, name, error); | |||
3484 | #endif | |||
3485 | free(freepath, M_TEMP); | |||
3486 | free(data, M_TEMP); | |||
3487 | free(name, M_TEMP); | |||
3488 | return (error); | |||
3489 | } | |||
3490 | ||||
3491 | /* | |||
3492 | * Nonexistent system call-- signal process (may want to handle it). Flag | |||
3493 | * error in case process won't see signal immediately (blocked or ignored). | |||
3494 | */ | |||
3495 | #ifndef _SYS_SYSPROTO_H_ | |||
3496 | struct nosys_args { | |||
3497 | int dummy; | |||
3498 | }; | |||
3499 | #endif | |||
3500 | /* ARGSUSED */ | |||
3501 | int | |||
3502 | nosys(td, args) | |||
3503 | struct thread *td; | |||
3504 | struct nosys_args *args; | |||
3505 | { | |||
3506 | struct proc *p = td->td_proc; | |||
3507 | ||||
3508 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
3509 | tdsignal(td, SIGSYS12); | |||
3510 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
3511 | return (ENOSYS78); | |||
3512 | } | |||
3513 | ||||
3514 | /* | |||
3515 | * Send a SIGIO or SIGURG signal to a process or process group using stored | |||
3516 | * credentials rather than those of the current process. | |||
3517 | */ | |||
3518 | void | |||
3519 | pgsigio(sigiop, sig, checkctty) | |||
3520 | struct sigio **sigiop; | |||
3521 | int sig, checkctty; | |||
3522 | { | |||
3523 | ksiginfo_t ksi; | |||
3524 | struct sigio *sigio; | |||
3525 | ||||
3526 | ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0); | |||
3527 | ksi.ksi_signoksi_info.si_signo = sig; | |||
3528 | ksi.ksi_codeksi_info.si_code = SI_KERNEL0x10006; | |||
3529 | ||||
3530 | SIGIO_LOCK()do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &sigio_lock))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&sigio_lock)))))->mtx_lock, 0x00000004, (_tid )))) __mtx_lock_sleep(&(((((&sigio_lock)))))->mtx_lock , _tid, (((0))), ((((void *)0))), ((0))); else do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire-> id, (uintptr_t) (((&sigio_lock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
3531 | sigio = *sigiop; | |||
3532 | if (sigio == NULL((void *)0)) { | |||
3533 | SIGIO_UNLOCK()do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& sigio_lock))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&sigio_lock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&sigio_lock))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&sigio_lock)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&sigio_lock)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
3534 | return; | |||
3535 | } | |||
3536 | if (sigio->sio_pgid > 0) { | |||
3537 | PROC_LOCK(sigio->sio_proc)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(sigio->sio_u.siu_proc)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(sigio-> sio_u.siu_proc)->p_mtx)))))->mtx_lock, 0x00000004, (_tid )))) __mtx_lock_sleep(&(((((&(sigio->sio_u.siu_proc )->p_mtx)))))->mtx_lock, _tid, (((0))), ((((void *)0))) , ((0))); else do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(sigio->sio_u.siu_proc)->p_mtx ))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
3538 | if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred)((sigio->sio_ucred)->cr_uid == 0 || (sigio->sio_ucred )->cr_ruid == (sigio->sio_u.siu_proc->p_ucred)->cr_ruid || (sigio->sio_ucred)->cr_uid == (sigio->sio_u.siu_proc ->p_ucred)->cr_ruid || (sigio->sio_ucred)->cr_ruid == (sigio->sio_u.siu_proc->p_ucred)->cr_uid || (sigio ->sio_ucred)->cr_uid == (sigio->sio_u.siu_proc->p_ucred )->cr_uid)) | |||
3539 | kern_psignal(sigio->sio_procsio_u.siu_proc, sig); | |||
3540 | PROC_UNLOCK(sigio->sio_proc)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (sigio->sio_u.siu_proc)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release ->id, (uintptr_t) (((&(sigio->sio_u.siu_proc)->p_mtx ))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(sigio->sio_u. siu_proc)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(sigio->sio_u.siu_proc)->p_mtx)))))-> mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep(&(((((& (sigio->sio_u.siu_proc)->p_mtx)))))->mtx_lock, (((0) )), ((((void *)0))), ((0))); } while (0); | |||
3541 | } else if (sigio->sio_pgid < 0) { | |||
3542 | struct proc *p; | |||
3543 | ||||
3544 | PGRP_LOCK(sigio->sio_pgrp)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(sigio->sio_u.siu_pgrp)->pg_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long(&(((((&(sigio-> sio_u.siu_pgrp)->pg_mtx)))))->mtx_lock, 0x00000004, (_tid )))) __mtx_lock_sleep(&(((((&(sigio->sio_u.siu_pgrp )->pg_mtx)))))->mtx_lock, _tid, (((0))), ((((void *)0)) ), ((0))); else do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(sigio->sio_u.siu_pgrp)->pg_mtx ))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
3545 | LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist)for ((p) = (((&sigio->sio_u.siu_pgrp->pg_members))-> lh_first); (p); (p) = (((p))->p_pglist.le_next)) { | |||
3546 | PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, ( _tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))-> mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { ( void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
3547 | if (p->p_state == PRS_NORMAL && | |||
3548 | CANSIGIO(sigio->sio_ucred, p->p_ucred)((sigio->sio_ucred)->cr_uid == 0 || (sigio->sio_ucred )->cr_ruid == (p->p_ucred)->cr_ruid || (sigio->sio_ucred )->cr_uid == (p->p_ucred)->cr_ruid || (sigio->sio_ucred )->cr_ruid == (p->p_ucred)->cr_uid || (sigio->sio_ucred )->cr_uid == (p->p_ucred)->cr_uid) && | |||
3549 | (checkctty == 0 || (p->p_flag & P_CONTROLT0x00002))) | |||
3550 | kern_psignal(p, sig); | |||
3551 | PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
3552 | } | |||
3553 | PGRP_UNLOCK(sigio->sio_pgrp)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& (sigio->sio_u.siu_pgrp)->pg_mtx))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release ->id, (uintptr_t) (((&(sigio->sio_u.siu_pgrp)->pg_mtx ))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&(sigio->sio_u. siu_pgrp)->pg_mtx))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&(sigio->sio_u.siu_pgrp)->pg_mtx)))))-> mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep(&(((((& (sigio->sio_u.siu_pgrp)->pg_mtx)))))->mtx_lock, (((0 ))), ((((void *)0))), ((0))); } while (0); | |||
3554 | } | |||
3555 | SIGIO_UNLOCK()do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& sigio_lock))))->lock_object.lo_data == 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release-> id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release-> id, (uintptr_t) (((&sigio_lock))), (uintptr_t) 0, (uintptr_t ) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&sigio_lock))))->mtx_lock != _tid || !atomic_cmpset_long (&(((((&sigio_lock)))))->mtx_lock, (_tid), 0x00000004 )) __mtx_unlock_sleep(&(((((&sigio_lock)))))->mtx_lock , (((0))), ((((void *)0))), ((0))); } while (0); | |||
3556 | } | |||
3557 | ||||
3558 | static int | |||
3559 | filt_sigattach(struct knote *kn) | |||
3560 | { | |||
3561 | struct proc *p = curproc((__curthread())->td_proc); | |||
3562 | ||||
3563 | kn->kn_ptr.p_proc = p; | |||
3564 | kn->kn_flagskn_kevent.flags |= EV_CLEAR0x0020; /* automatically set */ | |||
3565 | ||||
3566 | knlist_add(p->p_klist, kn, 0); | |||
3567 | ||||
3568 | return (0); | |||
3569 | } | |||
3570 | ||||
3571 | static void | |||
3572 | filt_sigdetach(struct knote *kn) | |||
3573 | { | |||
3574 | struct proc *p = kn->kn_ptr.p_proc; | |||
3575 | ||||
3576 | knlist_remove(p->p_klist, kn, 0); | |||
3577 | } | |||
3578 | ||||
3579 | /* | |||
3580 | * signal knotes are shared with proc knotes, so we apply a mask to | |||
3581 | * the hint in order to differentiate them from process hints. This | |||
3582 | * could be avoided by using a signal-specific knote list, but probably | |||
3583 | * isn't worth the trouble. | |||
3584 | */ | |||
3585 | static int | |||
3586 | filt_signal(struct knote *kn, long hint) | |||
3587 | { | |||
3588 | ||||
3589 | if (hint & NOTE_SIGNAL0x08000000) { | |||
3590 | hint &= ~NOTE_SIGNAL0x08000000; | |||
3591 | ||||
3592 | if (kn->kn_idkn_kevent.ident == hint) | |||
3593 | kn->kn_datakn_kevent.data++; | |||
3594 | } | |||
3595 | return (kn->kn_datakn_kevent.data != 0); | |||
3596 | } | |||
3597 | ||||
3598 | struct sigacts * | |||
3599 | sigacts_alloc(void) | |||
3600 | { | |||
3601 | struct sigacts *ps; | |||
3602 | ||||
3603 | ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK0x0002 | M_ZERO0x0100); | |||
3604 | refcount_init(&ps->ps_refcnt, 1); | |||
3605 | mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF)_mtx_init(&(&ps->ps_mtx)->mtx_lock, "sigacts", ( (void *)0), 0x00000000); | |||
3606 | return (ps); | |||
3607 | } | |||
3608 | ||||
3609 | void | |||
3610 | sigacts_free(struct sigacts *ps) | |||
3611 | { | |||
3612 | ||||
3613 | if (refcount_release(&ps->ps_refcnt) == 0) | |||
3614 | return; | |||
3615 | mtx_destroy(&ps->ps_mtx)_mtx_destroy(&(&ps->ps_mtx)->mtx_lock); | |||
3616 | free(ps, M_SUBPROC); | |||
3617 | } | |||
3618 | ||||
3619 | struct sigacts * | |||
3620 | sigacts_hold(struct sigacts *ps) | |||
3621 | { | |||
3622 | ||||
3623 | refcount_acquire(&ps->ps_refcnt); | |||
3624 | return (ps); | |||
3625 | } | |||
3626 | ||||
3627 | void | |||
3628 | sigacts_copy(struct sigacts *dest, struct sigacts *src) | |||
3629 | { | |||
3630 | ||||
3631 | KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"))do { } while (0); | |||
3632 | mtx_lock(&src->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((( &src->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long (&(((((&src->ps_mtx)))))->mtx_lock, 0x00000004, (_tid)))) __mtx_lock_sleep(&(((((&src->ps_mtx)))) )->mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire ->id, (uintptr_t) (((&src->ps_mtx))), (uintptr_t) 0 , (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); } while (0); | |||
3633 | bcopy(src, dest, offsetof(struct sigacts, ps_refcnt)__builtin_offsetof(struct sigacts, ps_refcnt)); | |||
3634 | mtx_unlock(&src->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((& src->ps_mtx))))->lock_object.lo_data == 0) do { (void)0 ; do { if (__builtin_expect((sdt_lockstat___adaptive__release ->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release ->id, (uintptr_t) (((&src->ps_mtx))), (uintptr_t) 0 , (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0); if (((((&src->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long(&(((((&src->ps_mtx)))))-> mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep(&(((((& src->ps_mtx)))))->mtx_lock, (((0))), ((((void *)0))), ( (0))); } while (0); | |||
3635 | } | |||
3636 | ||||
3637 | int | |||
3638 | sigacts_shared(struct sigacts *ps) | |||
3639 | { | |||
3640 | ||||
3641 | return (ps->ps_refcnt > 1); | |||
3642 | } |